

The State of the World's Antibiotics 2021

A Global Analysis of Antimicrobial Resistance and Its Drivers

© The Center for Disease Dynamics, Economics & Policy (CDDEP), Inc. 2021

The findings and conclusions contained within are those of the authors and do not necessarily reflect the positions or policies of CDDEP.

Related research and additional information are available at www.cddep.org and https://resistancemap.cddep.org/.

Suggested Citation: Aditi Sriram, Erta Kalanxhi, Geetanjali Kapoor, Jessica Craig, Ruchita Balasubramanian, Sehr Brar, Nicola Criscuolo, Alisa Hamilton, Eili Klein, Katie Tseng, Thomas Van Boeckel, Ramanan Laxminarayan. 2021. State of the world's antibiotics 2021: A global analysis of antimicrobial resistance and its drivers. Center for Disease Dynamics, Economics & Policy, Washington DC.

This report was edited by Sally Atwater.

Our work is available for sharing and adaptation under an Attribution 4.0 International (CC BY 4.0) license. You can copy and redistribute our material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. For more information, visit https://creativecommons.org/licenses/by-ncnd/4.0/

THE CENTER FOR DISEASE DYNAMICS, ECONOMICS & POLICY, INC. 5636 Connecticut Ave NW, PO Box 42735, Washington, DC 20015, USA

OFFICERS

Director, Ramanan Laxminarayan Associate Director for Finance and Administration, Priscilla Michell

BOARD OF DIRECTORS

Anil Deolalikar (Chair) Keshav Desiraju Ramanan Laxminarayan Didier Pittet Stephen Tollman Mary E. Wilson

Preface

Nearly 80 years after an antibiotic was used to treat the first patient, we are still learning about the effects of antibiotics and their usefulness in human and animal health. Antimicrobial resistance (AMR) has now reached epidemic proportions but remains out of sight for most of the general population. Meanwhile, with the disruptions caused by the novel SARS coronavirus (Covid-19), the world has relearned the lesson that infectious diseases shape, and will continue to shape, human destinies. The ability to develop and maintain a portfolio of effective anti-infective treatments and vaccines will likely be necessary as long as humans survive.

In this report, we have updated our work from the *State of the World's Antibiotics 2015*. In that first report, we provided extensive data from around the world on antimicrobial use and resistance, based on our work with ResistanceMap, a global repository that has been widely used by researchers, policymakers, and the media. Much has happened since 2015. The introduction of the Global Action Plan by the World Health Organization (WHO), Food and Agriculture Organization, and Organization for Animal Health gave impetus to the global response.

The subsequent call from the United Nations General Assembly in 2016 amplified the urgency of the problem and the need for proactive solutions and interventions in all countries. Some countries have made significant progress in AMR by developing national action plans and funding them. However, in many countries, there has been little to show for the past five years of global effort.

AMR continues to be challenging for several reasons, but high among them is the need to work multisectorially in human, animal, and environmental health domains. The One Health approach has remained more a concept than a widely adopted practice in managing disease risk. Vaccination coverage, infection control and prevention, and clean water and sanitation are critical for reducing the need for antibiotics in both animals and humans.

Stewardship to reduce the use of antibiotics is an imperative across all sectors but is challenged by the perception that antibiotics are inexpensive and that using them has no downside either for patients or for the rest of society.

This report on the state of antibiotics introduces country dashboards that capture progress on indicators that track AMR and show what remains to be done to decrease the need for antibiotics and their inappropriate use. It is the result of work over the years bringing together the evidence, and on the occasion of CDDEP's 10th anniversary, we are pleased to share this update with you.

We are optimistic that future generations will also witness the miracle of antibiotics. To ensure that privilege, it is incumbent on us to treat the crown jewels of modern medicine with care and respect.

Ramanan Laxminarayan Director, The Center for Disease Dynamics, Economics & Policy

Table of Contents

Abbreviatio	ns	07
Executive Su	ımmary	09
Chapter 1. C	hanging Patterns in Antimicrobial Resistance	11
Key Messages		11
Resistant Patho	gens and Genetic Elements	11
Resistance Rate	es and Trends	13
Chapter 2. D	Privers of Resistance: Antibiotics in Human Healthcare	18
Key Messages		18
Global Antibiot	ic Consumption and Projected Consumption	18
Factors Driving	Consumption	20
Overuse and Mi	isuse	21
Vaccines		22
Infection Preven	ntion and Control	23
Antimicrobial S	tewardship	23
Chapter 3. D	Privers of Resistance: Antibiotics in Agriculture	25
Key Messages		25
Antibiotic Use i	n Agriculture	25
Antibiotic Resis	stance in Food Animals	26
Regulation of A	ntibiotics in Food Animals	27
Chapter 4. A	ccess to Antibiotics and the Global Antibiotic Supply	29
Key Messages		29
Access to Antibi	iotics	29
Current and Fu	ture Antibiotic Supply	29
Antibiotic Resea	arch and Development	30
Appendix 1.	Country Dashboards	31
Argentina		34
Australia		36
Austria		38
Bangladesh		40
Brazil		42
Bulgaria		44
Canada		46
China		48
Croatia		50
Ecuador		52
France		54
Germany		56

Greece		58
India		60
Indonesia		62
Italy		64
Kenya		66
Latvia		68
Lithuania		70
Mexico		72
Nepal		74
Netherlands		76
Nigeria		78
Norway		80
Pakistan		82
Poland		84
Russia		86
Saudi Arabia		88
Serbia		90
South Africa		92
Spain		94
Sweden		96
Switzerland		98
Thailand		100
Turkey		102
UAE		104
United Kingdom	1	106
United States		108
Venezuela		110
Vietnam		112
Appendix 2.	Indicators	115
Appendix 3. Indicator Description and Information Source		
References	-	129

Abbreviations

ACT	artemisinin combination therapy
AGAR	Australian Group on Antimicrobial Resistance
AMC	antimicrobial consumption
AMR	antimicrobial resistance
AMU	antimicrobial use
ARV	antiretroviral
ASP	antimicrobial stewardship program
AWaRe	Access, Watch, and Reserve
CAESAR	Central Asian and European Surveillance of Antimicrobial Resistance network
CARA	Canadian Antimicrobial Resistance Alliance
CHASP	Checklist for Hospital Antimicrobial Stewardship Programming
CHINET	China Antimicrobial Surveillance Network
CDC	Centers for Disease Control and Prevention (U.S.)
CDDEP	Center for Disease Dynamics, Economics & Policy
CRE	carbapenem-resistant Enterobacteriaceae
DDD	defined daily dose
DID	defined daily doses per 1,000 inhabitants per day
DRI	Drug Resistance Index
DTG	dolutegravir
EARS-Net	European Antimicrobial Resistance Surveillance Network
ECDC	European Centre for Disease Prevention and Control
ESBL	extended-spectrum beta-lactamase
EU	European Union
EU/EEA	European Union/European Economic Area
FAO	Food and Agricultural Organization
GLASS	Global Antimicrobial Resistance Surveillance System
GDP	gross domestic product
HIV	human immunodeficiency virus
IMS MIDAS	Intercontinental Medical Statistics Medical Information Data Analysis System

КРС	Klebsiella pneumoniae carbapenemase			
K13	Kelch13 domain gene			
LMICs	low- and middle-income countries			
MDR	multidrug-resistant			
MRSA	methicillin-resistant Staphylococcus aureus			
NAP-AMR	National Action Plan for Antimicrobial Resistance			
NDM	New Delhi Metallo-beta-lactamase			
NNRTI(s)	non-nucleoside reverse-transcriptase inhibitor(s)			
PDR	pre-treatment (HIV) drug resistance			
PROVENRA	Program Come ezolano Surveillance Resistance to Antimicrobianos (Venezuelan			
	Antimicrobial Resistance Surveillance Program)			
RR-TB	rifampicin-resistant tuberculosis			
UNICEF	United Nations Children's Fund			
VINARES	Viet Nam Resistance			
WASH	water, sanitation, and hygiene			
WHO	World Health Organization			
XDR	extensively drug-resistant			

Executive Summary

As the 2010–2020 decade ended, having witnessed a global effort to control antimicrobial resistance, the Covid-19 pandemic arrived as a reminder of the tremendous economic and social damage that infectious diseases can unleash. Among the casualties of Covid-19 is some of the progress made on antimicrobial resistance (AMR). Antimicrobials continue to be prescribed for viruses, and countries have reported increasingly high rates of resistance among drugs used to treat common infections. Resistance to first-line antimicrobials is now emerging among the pathogens that cause HIV, malaria, and typhoid fever, threatening global progress on health, particularly in low- and middle-income countries (LMICs).

One major driver of resistance is the overuse and misuse of antibiotics in human healthcare. Globally, antimicrobial consumption is accelerating worldwide, particularly in LMICs, as the drugs become more accessible and affordable. The use of antibiotics that the World Health Organization deems critically important for human health increased 91% worldwide and 165% in LMICs between 2000 and 2015. Vaccines against many infectious agents are available, but low vaccination coverage, coupled with unsafe water and sanitation, leave many people vulnerable to infection and dependent on antibiotics for treatment. Investments to increase vaccine coverage, improve water and sanitation, and implement antimicrobial stewardship in health facilities could mitigate AMR worldwide.

The other major factor driving resistance is the widespread use of antibiotics in agriculture and aquaculture. The fast-growing demand for animal protein has increased the use of antimicrobials in the animal health sector, where these drugs are used not only to treat and prevent infection but also to promote rapid growth. All countries need to develop and enforce laws and other policies to reduce the use of antibiotics in both terrestrial and aquatic food animals.

Access to life-saving antibiotics in LMICs remains an issue. Although AMR poses an urgent global public health threat, more people in LMICs die from lack of access to antimicrobials than from resistant infections. Global efforts to mitigate AMR must also increase access to affordable and clinically appropriate antimicrobials. Antibiotic research and development lags behind clinical need: drugs in the pipeline are not sufficient to counter the increasing resistance to current antimicrobials and maintain a strong arsenal of effective antimicrobials.

This report follows on *The State of the World's Antibiotics 2015*, presenting updated data from around the world and summarizing recent research. Two tools are now available:

- The Drug Resistance Index measures the average effectiveness of the antibiotics used to treat a given bacterial infection. This tool can be used to assess and communicate trends in national AMR burden and reveal where resistance poses a significant problem.
- The Country Dashboards show the status of antibiotic resistance and use in humans and animals across 40 countries. AMR-relevant measures characterize each country, representing four indicator categories: (1) policy indicators; (2) antimicrobial resistance indicators; (3) antimicrobial use indicators; and (4) public health indicators. Each indicator category, in turn, comprises a battery of specific indicators.

Antimicrobial resistance is a clear and present danger to global health. The index and dashboards are designed to help government officials, policymakers, and healthcare stakeholders assess and track AMR status over time and in relation to other countries, and then prioritize actions.

Chapter 1. Changing Patterns in Antimicrobial Resistance

Key Messages

- 1. Antimicrobial resistance continues to rise as countries increasingly report high rates of resistance among antimicrobials used to treat common infections. Weighted average resistance levels are generally higher in low- and middle-income countries (LMICs).
- 2. Resistance to first-line antimicrobial agents is rapidly emerging among the pathogens that cause HIV, malaria, and typhoid fever, threatening global progress in eliminating these infectious diseases.
- 3. The Drug Resistance Index (DRI), which measures the average effectiveness of the set of antibiotics used to treat a given bacterial infection, is an effective tool for assessing and communicating trends in national AMR burden.
- 4. Higher DRI values in LMICs may reflect a relatively lower level of antibiotic effectiveness due to limited access to newer, more effective antibiotics, revealing where resistance poses a more significant problem.

Resistant Pathogens and Genetic Elements

AMR is a natural mechanism that allows microorganisms to survive. The process is accelerated by increasing levels of antibiotic use: selective pressure enables the spread of mutations that promote survival, shortening the time bacteria need to acquire resistance to new drugs. This, coupled with low rates of new antibiotic development, has contributed to alarming rates of resistance for selected pathogens, including priority pathogens for which few treatment options are available.^{1,2}

Protective mechanisms that have evolved in bacteria include preventing entry of the antimicrobial, producing enzymes that destroy or modify the antimicrobial, and making changes to the antimicrobial target. Some common bacterial enzymes known to result in antibiotic resistance can be categorized as follows:

- narrow-spectrum beta-lactamases, which act on penicillins and first-generation cephalosporins (TEM-1 and 2, SHV-1, cephalosporinases, OXA-type enzymes);
- extended-spectrum beta-lactamases (ESBL), which act on penicillins and all four generations of cephalosporins (SHV-2, SHV-5, SHV-7, SHV-12, TEM-10, TEM-12, TEM-26, CTX-M, OXA-type ESBLs); and
- carbapenemases, which act on penicillins, all four generations of cephalosporins, and carbapenems (KPC, NDM-1, VIM and IMP carbapenemases, OXA-type carbapenemases).

A recent study from CDDEP showed that resistance rates varied among pathogens (Figure 1); rates of resistant *Acinetobacter baumannii* were higher than those of other bacteria, and rates of resistant *Enterococcus faecium* were highest toward broad-spectrum penicillins.³ As expected, *Klebsiella pneumoniae* also showed high rates of resistance, and for this reason it is included in the priority pathogens list of the World Health Organization (WHO).⁴

Figure 1. **Global antibiotic use and resistance, by income class.** Variability in per capita antibiotic use measured in defined daily doses for high-income countries (A) and LMICs (B). Weighted average global resistance rate for the specified antibiotic-pathogen combination in high-income countries (C) and LMICs (D), using the most recent data available for 2012–15 and based on pooled worldwide resistance rates for the disease-causing organisms considered by the WHO as priority pathogens. DDD=defined daily doses. Penicillins (B)=broad spectrum. Penicillins (N)=narrow spectrum. Source: Laxminarayan, R. et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. The Lancet Infectious Diseases 20, e51–e60 (2020).

However, a growing concern is the increase in carbapenem-resistant Gram-negative pathogens encoded by a range of genes, including NDM-1, OXA-48, KPC, VIM, and IMP. Resistance has rapidly spread globally and across bacterial species since the first reported case in *Klebsiella pneumoniae* less than a decade ago⁶, demonstrating both our ability to track the spread and the challenges involved in containing it.

A similar concern is the emergence of plasmid-mediated genes (mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and icr-Mo⁷), which encode resistance to colistin, considered a drug of last resort. MCR-1 was first isolated in 2016 from Escherichia coli cultured from a pig in China,⁸ but it has since been reported globally and in numerous bacterial species, including *K. pneumoniae* and *Enterobacter species*.

Additionally, multiple variants of genes encoding extended-spectrum beta-lactamase (ESBL) and conferring resistance to penicillin, cephalosporins, and monobactam have now spread globally. Reports from major surveillance networks, including EARS-Net in Europe, indicate high prevalence in *E. coli* and *K. pneumoniae*. ESBL-positive Gram-negative bacteria are found in livestock, meat products, and companion animals.⁹

In Neisseria gonorrhoeae, resistance to the recommended first-line therapy (azithromycin and ceftriaxone) has been reported in the United Kingdom and Australia^{10,11} with the UK isolate showing resistance for all antibiotics recommended for the treatment of *N. gonorrhoeae*. For *Staphylococcus aureus* and *Enterococcus faecium*, no major shifts in resistance have been reported for the global molecular epidemiology of genes encoding methicillin resistance (*mecA*) or vancomycin resistance (*vanA and VanB*) in the past decade. However, the emergence and spread of methicillin resistance in the form of *mecC* has also been reported.¹²

Resistance Rates and Trends

AMR is a global problem, but its prevalence across the globe varies with antibiotic consumption, access to clean water and adequate sanitation, vaccination coverage, and access to quality healthcare. The latest WHO report, based on AMR data from 66 countries, illustrates an alarming picture of the global status of AMR as an increasing number of countries are now reporting high rates of resistance among antimicrobials used to treat common infections. Specifically, resistance rates to ciprofloxacin, commonly used to treat urinary tract infections, varied from 8.4% to 92.9% for *E. coli* and from 4.1% to 79.4% for *K. pneumoniae* in 33 and 34 countries, respectively.¹³

In the United States, an estimated 2.8 million antibiotic-resistant infections each year contribute to more than 35,000 deaths. In 2017, 223,900 cases of *Clostridioides difficile* led to at least 12,800 deaths.² Of particular concern in the United States have been the community increases in drug-resistant gonorrhea and extended-spectrum beta-lactamase (ESBL)–producing Enterobacteriaceae (124% and 50%, respectively) since 2000. There have been some gains, however. Since 2013, deaths from AMR-related causes have declined by 18%, and vancomycin-resistant *Enterococcus* and carbapenem-resistant *Acinetobacter* cases have fallen by 41% and 33%, respectively. Nevertheless, the rapidly changing AMR landscape requires continuous surveillance and nimble policymaking to prevent further spread.

In Canada, antibiotic resistance to first-line antimicrobials was 26%, and the number of deaths directly attributed to AMR amounted to 5,400 in 2018. Syndromes with the highest resistance rate were musculoskeletal infections, intra-abdominal infections, pneumonia, skin and soft tissue infections, and urinary tract infections.¹⁴

Data from 30 countries in the European Union/European Economic Area (EU/EEA) revealed a high level of heterogeneity in AMR trends, with the highest AMR percentages reported by countries in the south and east of Europe. The 2019 European Antimicrobial Resistance Surveillance Network (EARS-Net) report showed that more than half of the *Escherichia coli* isolates and more than a third of the *Klebsiella pneumoniae* isolates were resistant to at least one antimicrobial group.¹⁵

Additionally, several countries reported carbapenem resistance greater than 10% in *K. pneumoniae*. For *Staphylococcus aureus*, despite the reduction in the percentage of methicillin-resistant (MRSA) isolates, MRSA remains an important pathogen in the EU/EEA. The variation in AMR percentages across EU/EEA countries warrants concerted efforts and close international cooperation.¹⁵

There are considerable knowledge gaps regarding AMR prevalence globally, especially in LMICs that lack clinical and laboratory capacity and surveillance infrastructure. A systematic review of 144 studies across Africa lacked AMR data for approximately 40% of the African countries.¹⁶ The study showed that resistance to penicillin and amoxicillin was reported in *Streptococcus pneumoniae* (26.7%) and *Haemophilus influenzae* (34.0%), respectively. Additionally, *E. coli* resistance to amoxicillin, trimethoprim, and gentamicin was 88.1%, 80.7%, and 29.8%, respectively. In the Asia and Pacific region, South East Asia is estimated to have the highest risk of AMR emergence and spread, with the highly transferable New Delhi metallo- β -lactamase-1 (NDM-1) as an example. Furthermore, China and India alone accounted for more than one-third of the global incidence of multidrug-resistant (MDR) tuberculosis (TB).¹⁷

To overcome the gaps in our understanding of AMR prevalence in LMICs, one study used the relationship between AMR prevalence and socioeconomic characteristics to project AMR prevalence for selected pathogens. Taking existing prevalence data from ResistanceMap¹⁸ and socioeconomic profiles constructed from World Bank indicators, the study identified several areas in need of surveillance effort prioritization. For carbapenem-resistant *Acinetobacter baumannii* and third-generation cephalosporin-resistant *E. coli*, specific countries of interest were in the Middle East, sub-Saharan Africa, and the Pacific Islands.¹⁹

Drug Resistance Index

Communicating trends in national AMR burden is confounded by layers of complexity surrounding drugs' varying efficacy against different pathogens. The Drug Resistance Index (DRI) combines antibiotic use and antibiotic resistance in one measure to quantify and communicate to broader audiences the effectiveness of antibiotics across countries.³²⁰ The DRI resembles composite price indices in economics: measurements of antibiotic consumption and resistance are combined across multiple pathogen-organism combinations to create a single metric representing an aggregate level of drug resistance.

Briefly, a composite index score is derived by multiplying the proportion of each antibiotic used to treat a set of pathogens by the proportion of all isolates that were resistant to that drug³ :

where *pkt* is the proportion of resistance to drug *k* among all included pathogens for time *t*, and *qkt* is the proportion of drug *k* used to treat those pathogens in all drugs included in the index for time *t*. A score of 0 indicates 100% susceptibility, and 100 indicates 100% resistance (Figure 2).

Figure 2. **Drug Resistance Index across countries.** Each bar represents the DRI for countries reporting antibiotic resistance for five or more pathogens and 15 or more pathogen-antibiotic combinations for at least one year between 2012 and 2015. Data for the most recent year are shown. Country income classifications were based on World Bank analytical classifications for fiscal year 2015. Source: Klein, E. Y., Tseng, K. K., Pant, S. & Laxminarayan, R. Tracking global trends in the effectiveness of antibiotic therapy using the Drug Resistance Index. BMJ Glob. Heal. 4, (2019).

As an aggregate measure, DRI reflects the average effectiveness of a set of antibiotics used to treat a given bacterial infection. For example, a country with high per capita drug use would not have a high DRI if resistance rates to the most frequently used drugs were low. Conversely, high rates of resistance would lead to a high DRI even if per capita antibiotic use was relatively low.³ In LMICs, higher DRI values may reflect a relatively lower level of antibiotic effectiveness due to limited access to newer, more effective antibiotics, revealing where resistance poses a more significant problem. As shown in Figure 2, high-income countries (among them, Sweden, Canada, Norway, Finland, and Denmark) had the lowest DRIs, and LMICs had the highest, reflecting the very low effectiveness of antibiotic therapy.³

Emerging Threats: Resistance in HIV, Malaria, and Typhoid

Addressing AMR requires a particular focus on mitigating drug resistance in three infectious diseases that burden a large part of the global population: human immunodeficiency virus (HIV), malaria, and typhoid.

HIV

As of 2019, approximately 38 million people were living with HIV, and as of June 2020, 26 million had access to antiretroviral (ARV) drugs.²¹ Although the unprecedented increase in access to ARVs in the past decade has saved millions of lives, it has also contributed to a significant increase in resistance to HIV drugs. HIV drug resistance is categorized by the WHO as follows: (1) acquired HIV drug resistance, which develops in the presence of ARVs; (2) transmitted HIV drug resistance, which occurs when individuals are infected with a strain containing drug resistance mutations; and (3) pretreatment HIV drug resistance (PDR), which refers to resistance among ARV-naive people initiating ARV therapy or people with previous ARV drug exposure initiating or reinitiating first-line ARV therapy.

According to the 2019 WHO HIV Drug Resistance Report, 12 of 18 countries (Argentina, Eswatini, Cuba, Guatemala, Honduras, Namibia, Nepal, Nicaragua, Papua New Guinea, South Africa, Uganda, and Zimbabwe) showed PDR levels exceeding 10% to non-nucleoside reverse-transcriptase inhibitors (NNRTIs), such as efavirenz and nevirapine.²² NNRT1 resistance was nearly twice as high in women than in men, and nearly three times higher among people with previous exposure to ARV. In response to this trend, the 2018 WHO ARV guidelines recommended a rapid shift to dolutegravir (DTG)-based regimens as the preferred first-line treatment for adults and children. This change was incorporated in the national guidelines of all countries exceeding a 10% resistance threshold, but the extent of implementation remains uncertain. For instance, although the change to DTG-based regimens for infants and children was recommended in 2013, approximately 77% of young children globally were still receiving nevirapine as first-line ARV therapy in 2017 as a result of limited supplies of child-friendly drug formulations. Findings of emerging levels of PDR underscore the importance of drug resistance surveillance, policy responses, and access to appropriate therapies.²³

Malaria

Despite remarkable achievements in the global response to malaria in the past two decades, progress since 2015 has reached a plateau, and it is estimated that the 2020 targets of WHO's Global Malaria Strategy on the reduction of disease prevalence and death were missed by 37% and 22%, respectively.²⁴ The surveillance of resistance to common antimalarial drugs is vital to ensure treatment efficacy and make progress toward malaria elimination.

The discovery of a molecular marker for artemisinin-resistant *Plasmodium falciparum*, the kelch13 domain gene (K13),²⁵ has enabled large-scale surveillance of artemisinin resistance beyond the capability of parasite clearance studies. The first reported partial resistance to artemisinin combination therapy (ACT) was detected in Asia in 2008, on the border between Thailand and Cambodia.²⁶ More than a decade later, studies showed that South East Asia remained the epicenter for artemisinin partial-resistance.^{27,28} Given the region's high levels of drug resistance, the drastic decrease in the reported number of *P. falciparum* malaria cases (97%) and all malaria (90%) in the Global Malaria Strategy between 2000 and 2019 has been considered a significant gain. Resistance to ACT does not appear to be a substantial problem in African countries. Nevertheless, close surveillance is imperative, since the emergence of resistance to ACT in Africa would probably have devastating consequences. In the WHO African region, the first-line treatment failure rates for the most common type of malaria (P. falciparum) remain below 10%.²⁴

Typhoid Fever

Each year, between 11 million and 20 million typhoid fever cases result in approximately 128,000 to 161,000 deaths. At highest risk are populations lacking safe water and adequate sanitation, especially children.²⁹ Treatment of typhoid with antibiotics is complicated by the increasing AMR in *Salmonella typhi* and the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains.³⁰ As a result, newer antibiotics such as cephalosporins and azithromycin are used in high-burden regions.²⁹ Suboptimal treatment from emerging AMR could increase transmission because of prolonged bacterial shedding, complications, and death. In Pakistan, between 2016 and 2018, an XDR *S. typhi* strain resistant to all recommended treatment led to an outbreak, causing great concern about its potential to spread globally. Although the cause was likely contaminated drinking water, the outbreak highlighted the consequences of vaccine hesitancy in the region.³¹ To reduce disease burden, the use of antibiotics, and emerging resistance, the WHO approved a conjugate vaccine for typhoid in 2017, which is currently recommended for children older than six months.²⁹

Chapter 2. Drivers of Resistance: Antibiotics in Human Healthcare

Key Messages

- 1. The misuse and overuse of antimicrobials in the human health sector is a major driver of AMR.
- 2. Globally, the use of antimicrobials is accelerating worldwide, particularly in LMICs, as antimicrobials become readily accessible and affordable. The use of WHO Watch antibiotics increased 90.0% worldwide and 165% in LMICs between 2000 and 2015.
- 3. Vaccines against many infectious agents are available, but low vaccination coverage, coupled with poor water, sanitation, and hygiene (WASH) infrastructure, leave many people vulnerable to infection and dependent on antibiotics for treatment.
- 4. Investments to increase vaccine coverage, develop WASH infrastructure, and implement antimicrobial stewardship in health facilities could mitigate AMR worldwide.

Global Antibiotic Consumption and Projected Consumption

Antibiotics are the most commonly prescribed medicines in the world. The use of these drugs has soared over recent decades in many countries, particularly in LMICs. Global antibiotic consumption increased by 65% between 2000 and 2015, and the rate of antibiotic consumption increased by 39%, from 11.3 to 15.7 defined daily doses (DDDs) per 1,000 people.³²

Antimicrobial use in Brazil increased from 2,535 DDDs per 1,000 people in the year 2000 to 6,763 in 2015, according to most recent data available.¹⁸ Over that same time period, antimicrobial use increased from 1,910 to 3,060 DDDs per 1,000 people in China, from 557 to 2,112 in Francophone West African countries, and doubled from 5,647 to 10,934 DDDs per 1,000 people in Saudi Arabia (Figure 3).

Figure 3. **Increases in total antibiotic use, 2000–2015.** Total antibiotic use in DDDs per 1,000 people in (A) Francophone West Africa, (B) Brazil, (C) China, and (D) Saudi Arabia. Source: Center for Disease Dynamics Economics and Policy. ResistanceMap. Available at: https://resistancemap.cddep.org/. (Accessed: 25th January 2021)

In high-income countries total consumption increased between 2000 and 2015, but DDDs per 1,000 inhabitants increased only slowly or even declined. For example, in Switzerland, antimicrobial use rose by only 716 DDDs per 1,000 people in a 15-year time period. In the United States, antimicrobial use remains high but declined from 12,030 to 10,298 DDDs per 1,000 people between 2000 and 2015. A study by CDDEP researchers evaluating increases in global antibiotic consumption between 2000 and 2015 revealed that per capita antibiotic consumption in LMICs was lower than in high-income countries; increasing access to antibiotics is leading to the converging consumption rates.³² Furthermore, rapid increases in last-resort compounds such as glycylcyclines, oxazolidinones, carbapenems, and polymyxins, in all countries underscores the urgent need for regulation of antibiotic use. The same study projected that in the absence of policy changes, global antibiotic consumption could double by 2030.

To mitigate AMR, the WHO developed the Access, Watch, and Reserve (AwaRe) antibiotic classification system.³³ Access antibiotics are those that can treat a wide range of common pathogens and have lower resistance potential and should therefore be considered first-line options over antibiotics in the other categories. Watch antibiotics are those with higher resistance potential and those deemed "critically important antimicrobials for human medicine." Reserve antibiotics should be used only for multidrug-resistant infections that cannot be treated by any other antibiotic. As the burden of AMR rises globally and pathogens become increasingly resistant to common first-line antibiotics, clinicians must turn to more expensive, second-line antibiotics. Between 2000 and 2015, the global per capita consumption of Watch antibiotics increased by 90.9%, driven largely by LMICs, which saw a 165% increase (from 2.0 to 5.3 DDDs per 1,000 people), versus a 27.9 percent in high-income countries (from 6.1 to 7.8 DDDs). In the same time period, the use of Access antibiotics increased only 26.2% globally.³⁴

Factors Driving Consumption

In high-income countries, widescale improper use drives the growing resistance to antimicrobials around the world. In LMICs, the primary factors are increased access to antibiotics, distinct national disease burden, and seasonal patterns. As mentioned above, the considerable increase in the proportion of Watch antibiotic consumption occurred primarily in LMICs (Figure 4). Densely populated regions with a high incidence of infectious diseases are likely to have the highest antibiotic consumption and selective pressure for AMR emergence.

Figure 4. Change in the national consumption of Access and Watch antibiotics in DDDs per 1000 inhabitants (DIDs) 2000–2015 Source: Klein, E. Y. et al. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–15: an analysis of pharmaceutical sales data. Lancet Infect. Dis. 21, 107–115 (2020).

Seasonal variation is another factor that affects antibiotic prescribing, which generally peaks during the winter months traditionally associated with influenza.³⁵ Both appropriate use (e.g., to treat secondary bacterial infections) and inappropriate use (e.g., to treat viral infections caused by influenza or other viruses) may account for the winter increase. A recent study by CDDEP researchers exploring the relationship between influenza vaccination and antibiotic use found that a 10% increase in influenza vaccination coverage was associated with a 6.5 % reduction in antibiotic use during the influenza season, indicating that a reduction in influenza cases could lead to a reduction in antibiotic use. Increased vaccination rates were associated with reductions in antibiotic prescribing rates among pediatric (6%), elderly (5.2%), and adult populations (4.2%).³⁶

The Covid-19 pandemic may be encouraging the overuse of antibiotics, partly because of misinformation about antibiotics' benefits as treatment options for Covid-19 patients.^{37,38} Empiric use of antibiotics in such patients has been widespread. A study reported that 71% of the patients received at least one dose of antibiotics, despite just 3.6% co-infection cases.³⁹ Furthermore, data from an international survey completed by experts in 23 countries reported clinical presentation as the most critical reason for the start of antibiotic therapy, followed by laboratory markers of inflammation and radiology findings. The widespread use of broad-spectrum antibiotics in patients with Covid-19 warranted implementation of antimicrobial stewardship principles to mitigate the negative consequences of unnecessary antibiotic therapy.⁴⁰

Overuse and Misuse

The overuse and misuse of antimicrobials in the human health sector are major drivers of AMR. Surveillance data worldwide are limited, but emerging evidence suggests that overuse and misuse are higher in certain clinical settings, for certain patient demographics and clinical indications, and in LMICs, particularly in the African region.

The 2015 Global Point Prevalence Survey assessed antimicrobial prescribing to patients admitted to more than 300 hospitals across 53 countries, including 25 LMICs.⁴¹ The study found that antimicrobial prescribing practices varied by geographic region and by type of clinical setting. In Eastern Europe, 27.4% of inpatients were prescribed an antimicrobial, whereas in Africa, which had the highest prescription rate, 50% of inpatients received an antimicrobial. The high rate of prescriptions for antimicrobials in Africa may be explained by the region's higher burden of infectious diseases.

In many LMICs in Africa and Asia, antimicrobials are readily available without a prescription. Although many countries require prescriptions for such drugs, oversight and enforcement of the laws and policies are lax. As a result, patients seeking antimicrobials can bypass clinicians and diagnostics and directly purchase antimicrobials, which may not be clinically appropriate.⁴² Moreover, many countries have private sector healthcare providers and pharmacies, which are not always well regulated by the national governments and may recommend prolonged antimicrobial therapy for economic rather than clinical reasons. The scale and consequences of nonprescription antimicrobial use and private sector sales are, however, not well known.

Generally, antimicrobial use and misuse are higher in specific settings, such as the primary and acute care wards, and for clinicians treating neonatal and pediatric patients or specific infections or syndromes. Previous studies have found that the rate of inappropriate antibiotic use in the primary healthcare setting is as high as 55% in South Africa,⁴³ 88% in Pakistan,⁴⁴ 61% in China,⁴⁵ and 15.4% in Canada.⁴⁶

A study published in 2019 found that in the primary healthcare setting in Louisiana, USA, up to 60% of antimicrobial prescriptions given to patients with acute respiratory tract infections were clinically inappropriate,⁴⁷ not only rendering the immediate treatment ineffective but also fueling the emergence and spread of AMR. Other conditions that are commonly mistreated with an inappropriate type or duration of antibiotic therapy include acute bronchitis, sinusitis, and otitis media.⁴⁶

Vaccines

WHO estimates that every year, vaccines avert 2 million to 3 million deaths from diphtheria, tetanus, pertussis (whooping cough), and measles. An additional 1.5 million deaths could be avoided if global vaccination coverage increased.⁴⁸ Vaccines can reduce AMR via two mechanisms: by reducing the transmission of resistant infections, and by reducing the selection pressure for AMR, since antimicrobial usage falls with the number of total infections (Figure 5).⁴⁹

Ultimately, this reduction in resistant cases will lead to fewer untreatable infections and more lives saved.

Many vaccines in current use (against pneumococcal disease, seasonal influenza, typhoid, and rotavirus) and in the pipeline (against tuberculosis, shigella, and Gram-negative bacteria) can help reduce the AMR disease burden and thereby save lives.⁵⁰⁻⁵² In general, efforts to assess the benefits of vaccines in terms of deaths averted and reduction in medical impoverishment have not considered the effects on AMR.⁵³ Over the past few years, efforts to better quantify the gains of vaccination for AMR have been made through the ARVac Consortium and the WHO, along with the Bill & Melinda Gates Foundation and the Wellcome Trust.

A recent global study from the ARVac consortium reported that the pneumococcal conjugate vaccines and live attenuated rotavirus vaccines confer 19.7% (3.4–43.4%) and 11.4% (4.0–18.6%) protection against antibiotic-treated episodes of acute respiratory infection and diarrhea, respectively, in age

groups with the greatest disease burden attributable to the vaccine-targeted pathogens.⁵⁴ Each year, pneumococcal and rotavirus vaccines currently prevent 23.8 million and 13.6 million antibiotic-treated illness episodes, respectively, among children under five in LMICs. Remarkably, achieving universal coverage with these two vaccines could prevent an additional estimated 40.0 million episodes of antibiotic-treated illness. Another study from this consortium found that implementation of pneumococcal vaccines has reduced the proportion of circulating pneumococci resistant to first-line antibiotic treatment for pneumonia, as has been found by other studies.^{55,56}

Another study from ARVac found that a postexposure TB vaccine (when it becomes available) with 50% efficacy in reducing active disease could avert about 10% of rifampicin-resistant tuberculosis (RR-TB) cases and 7.3% of deaths over 2020–2030 in the 30 countries that collectively accounted for 90% of RR-TB incidence worldwide in 2018 (Fu et al., forthcoming in Nature Communications). The benefits were projected to be even greater if the vaccine was combined with improvements in RR-TB diagnosis and treatment, relative to a scenario of no vaccine and no such improvements.

Infection Prevention and Control

Infection prevention and control is a continuing challenge in healthcare settings. Although there is greater awareness about hand hygiene as a result of Covid-19, it is unclear whether the behavioral changes will outlast the pandemic. Lack of access to clean water and improved hygiene and sanitation causes nearly 500,000 deaths each year from waterborne diarrheal diseases, the majority of which occur in LMICs.¹⁰ Investing in WASH infrastructure in the community and in healthcare facilities is one of the most beneficial and cost-effective interventions to reduce the burden of infectious and drugresistant diseases and thereby decrease the need for antibiotic treatment—a major driver of AMR.

Antimicrobial Stewardship

The SCMID Study Group for Antimicrobial Stewardship recently reviewed the emergence and evolution of the term 'antimicrobial stewardship programs' and suggested defining the strategy comprising antimicrobial stewardship programs (ASP) as a "...coherent set of actions which promote using antimicrobials in ways that ensure sustainable access to effective therapy for all who need them".

ASP implement evidence-based interventions at local, national, and global levels that promote appropriate antimicrobial management in human and animal health. ASP interventions include: limiting antibiotic use to bacterial indications, avoiding use of broad-spectrum antibiotics and unauthorized combinations, and ensuring that antibiotics are administered per the recommended dose and duration. The WHO AWaRe classification of antibiotics serves as essential guidance for developing ASP tools, improving both access and clinical outcomes.⁵⁹

Establishing an ASP at any level, requires political will and leadership, collaborative efforts between programs and divisions, identification of resources, monitoring and surveillance, effective interventions, training, education, and reporting. Researchers at CDDEP, in collaboration with an expert panel, developed a checklist for hospital-based ASPs, based on the review of published scientific research and existing checklists.⁶⁰ Development of the Checklist for Hospital Antimicrobial Stewardship Programming (CHASP) aimed to guide the establishment of hospital-based ASP in both high-income and low- and middle-income countries (Figure 6).

Figure 6: Core components of the Checklist for Hospital Antimicrobial Stewardship **Programming (CHASP).** Source: Pulcini, C. et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin. Microbiol. Infect. 25, 20 (2019).

The checklist's feasibility was then investigated by surveying twelve Leading Health Systems Network hospitals across nine countries (including two low-income countries), utilizing a questionnaire informing on the hospitals' ability to meet a set of criteria related to the core elements of the checklist.⁶¹ None of the checklist elements were absent in all of the hospitals assessed, indicating the survey's practicality. While senior leadership in ten out of twelve hospitals agreed that ASP is a key performance indicator, only three hospitals reported having staffing standards to support ASP implementation. Barriers to ASP were assessed to be lack of expertise, limited financial resources, suboptimal use of IT, insufficient collaboration, and absence of hospital leadership commitment. Similar barriers to ASP implementation in hospitals were also observed in a cross-sectional, multicenter study in three Kenyan hospitals.⁶²

ASP is considered one of the pillars of an integrated approach to health systems strengthening, its ultimate goal being the optimization of antimicrobial prescribing and use, improvement of patient quality of life, and reduction of AMR and its economic burden.⁵⁸ In light of the SARS-CoV-2 pandemic, there is evidence of a surge in the inappropriate use of antibiotics.⁴⁰ In one multi-hospital cohort study, nearly two-thirds of COVID-19 patients received early empiric antibiotics, while only 3.5 percent had a confirmed community-onset bacterial infection.⁶³ Therefore, experts urge for existing ASPs to continue to operate without disruptions and for new programs to be established to mitigate exacerbation of the threat of AMR.^{64,65}

Chapter 3. Drivers of Resistance: Antibiotics in Agriculture

Key Messages

- 1. The enormous increase in the demand for animal protein has rapidly increased the use of antimicrobials in the animal health sector, where these drugs are used not only to treat and prevent infection but also to promote rapid growth.
- 2. China and India represented the largest hotspots of resistance, with new hotspots emerging in Brazil and Kenya.
- 3. All countries need to develop and implement legislation and other policies to reduce the use of antibiotics in both terrestrial and aquatic food animals.

Antibiotic Use in Agriculture

The global rise in demand for animal protein is among the salient changes of our time. Like the increase in carbon emissions from industrial activity, the enormous increase in the consumption of animal protein has profound effects on both environmental and human health. Animals raised for human consumption constitute nearly 60% of the total mammalian biomass on the planet, and poultry makes up more than 90% of the avian biomass.⁶⁶

Antimicrobial consumption in animals is nearly triple that of humans and is a primary driver of the scale-up in animal protein production.⁶⁷ Since 2000, meat production has reached a plateau in highincome countries but has grown by 64%, 53%, and 66% in Asia, Africa, and South America, respectively. Research from CDDEP and collaborators find that in 2013, the global consumption of all antimicrobials in food animals was 131,109 tons (95% C.I. [100,812–190,492]) and is projected to reach 200,235 tons (95% CI [150,848–297,034]) by 2030.³² Consumption levels varied considerably between countries, ranging from 8 mg/PCU (a kilogram of animal product) in Norway to 318 mg/PCU in China (SM). China is the world's largest consumer of veterinary antimicrobials, in both relative (per PCU) and absolute terms.⁶⁸

Aquaculture consumption is increasing at a rate even faster than meat and dairy consumption. Globally, aquaculture contributes 8% of animal protein intake to the human diet. Global antimicrobial use in the rapidly expanding aquaculture industry has been estimated at 10,259 tons (95% uncertainty interval [UI] 3,163–44,727 tons) in 2017 and is projected to increase by a third to 13,600 tons in 2030 (UI 4,193–59,295) (Figure 7).⁶⁹ Global antimicrobial consumption in aquaculture is concentrated in the Asia-Pacific region, at more than 93%, with China alone contributing 57.9% of global consumption in 2017.⁶⁹

Figure 7: Global antimicrobial consumption, 2013–2030. Dotted lines represent the 95% uncertainty interval for antimicrobial consumption estimates in fish. Source: Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M. & Van Boeckel, T. P. Global trends in antimicrobial use in aquaculture. Sci. Rep. 10, 21878 (2020).

Antibiotic Resistance in Food Animals

Research from CDDEP and collaborating institutions has found that from 2000 to 2018, the proportion of antimicrobials showing resistance above 50% increased from 0.15 to 0.41 in chickens and from 0.13 to 0.34 in pigs⁷⁰ (Figure 8). China and India represented the largest hotspots of resistance, with new hotspots emerging in Brazil and Kenya.

Figure 8. Increase in antimicrobial resistance in LMICs. The proportion of antimicrobial compounds with resistance higher than 50% is shown. Source: Van Boeckel, T. P. et al. Global trends in antimicrobial resistance in animals in low- And middle-income countries. Science (80-.). 365, (2019).

The past five years has seen a greater acceptance of the One Health approach to managing antibiotic effectiveness across countries. The structure of the Global Action Plan, which involves the WHO, the Food and Agricultural Organization, and the Organization for Animal Health, has set the stage for a similar approach at the national level.^{71,72} Covid-19, a zoonotic disease, has improved public recognition and understanding that the health of humans, animals, and the environment are intricately connected.

Regulation of Antibiotics in Food Animals

Policies to reduce the use of antibiotics in both terrestrial and aquatic animals are needed. Effective policies could reduce the use of antimicrobials in terrestrial food animals by 9% to 80% by 2030, compared with a business-as-usual increase in the livestock sector with current levels of antimicrobial use (Figure 9).⁶⁸ This could be achieved by reducing either the quantity of drugs used per animal (targets 1 and 3) or the number of animals raised for food (target 2). Similar policies could be employed in aquaculture as well.

Antimicrobial consumption in food animals by 2030

Business as usual and intervention policies are shown. Revenue ranges are estimated for different fee rates (TR) and price elasticities of demand (PED). For 3C, 3D, and 3E, PEDs are derived from time series of imports of veterinary antimicrobials in each country (Protocol S4); the global average PED was -0.95. See supplementary materials for discussions of uncertainty in all estimates shown in figures. PCU, population correction unit.

Figure 9. **Antimicrobial consumption in food animals by 2030** *Source: Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Sci. Mag.* 1350–1352 (2017). doi:10.1126/science.aao1495

The coming few years offer a window of opportunity to reduce antibiotic use to raise food animals before these practices become entrenched and difficult to change. In the United States, the Food and Drug Administration's Guidance 213 rulings⁷³ have been observed to have a tempering effect on the use of antibiotics as growth promoters.⁷⁴ Reducing and eventually phasing out all use of antibiotics for animal growth promotion should be a global goal to ensure that both animal and human health are safeguarded.

Key Messages

- 1. Although AMR poses an urgent global public health threat, more people in LMICs die from lack of access to antimicrobials than from resistant infections.
- 2. Global efforts to reduce the inappropriate use of antimicrobials and to mitigate AMR must also increase consistent access to affordable and clinically appropriate antimicrobials.
- 3. Antibiotic research and development lags behind clinical need, and the antibiotic pipeline is not equipped to mitigate the effect of increasing resistance o current antimicrobials.

Access to Antibiotics

AMR poses an increasingly urgent global public health threat, yet thousands of people continue to die from preventable and treatable infectious diseases because they lack access to clinically appropriate antimicrobials. It is estimated that each year, treatable infectious diseases cause more than 5 million deaths, the majority in LMICs, where the morbidity and mortality burden from treatable infectious disease far outweighs the AMR burden.⁷⁵

In a 2019 report, CDDEP researchers conducted literature reviews and stakeholder interviews to assess access barriers to antimicrobials in Germany, India, and Uganda.⁷⁶ This work identified three major barriers to antimicrobial access in these settings: the unaffordability of drugs and health services, with limited government funding for health services; a lack of regulations and processes for bringing new drugs to local markets; and weak local and national drug supply chains causing frequent drug stock-outs.

LMICs face dual burdens of mortality from treatable infectious diseases and resistant pathogens in the immediate future. Moreover, AMR may compound the challenge in accessing antimicrobials as pathogens become resistant to commonly used first-line drugs. Clinicians must then rely on second-line agents that may be unavailable in LMICs and are more expensive.⁷⁷ Solutions and policies to address the rising AMR burden must also consider the need for continued access to clinically appropriate antimicrobials, as well as increased access to antimicrobials and their appropriate use.

Current and Future Antibiotic Supply

The antibiotic era began in the 1930s, when the discovery of bactericidal compounds in soil-dwelling organisms introduced the golden age of antibiotic drug discovery. Over the next few decades, more than 65 antibiotics in nine classes were developed.⁷⁸ The naturally occurring antibiotics of the early years have given way to synthetic compounds,, and current research and development efforts focus on creating derivatives of older classes of antibiotics.⁷⁸

Recently, antibiotic shortages have been observed. The United States alone has seen 148 antibiotic shortages from 2001 to 2013.⁷⁹ Recently, penicillin shortages affected at least 39 countries in Asia, South America, North America, and Europe.⁸⁰ As of June 29, 2020, 10.5% of all drug shortages listed

The declining effectiveness and shortages of current antibiotics could both be offset by several antibiotics in clinical development. As of December 2019, 41 new antibiotics are in development: 15 in Phase 1 clinical trials, 12 in Phase 2, and 13 in Phase 3. Of these developmental-stage antibiotics, approximately 18 have the potential to fight against Gram-negative pathogens including Gram-negative ESKAPE pathogens include *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* species, all of which have shown demonstrable increases in drug-resistant variants over the past few decades and are responsible for serious infections.⁸² Of these new drugs, 13 have demonstrated a potential to act against carbapenem-resistant and ESBL-producing Enterobacteriaceae, pathogens deemed by the WHO to be critical threats because they are resistant to nearly all antibiotics.⁸³

Only about 20% of infectious disease drugs that reach clinical testing phases will be approved by organizations like the US Food and Drug Administration.⁸⁴ However, historically, approximately 60% of drugs that enter Phase 3 clinical trials have been approved, generating some optimism about the outlook for new antibiotics.⁸⁴

Antibiotic Research and Development

Pharmaceutical research and development has not responded to external pressure for new antibiotics, even though the antibiotic development pipeline has shown some improvement since 2013.^{5,83,85} Over the past 20 years, only two new drug classes, lipopeptides and oxazolidinones, which protect against Gram-negative bacteria, have been developed and approved by the European Medicines Agency and the US Food and Drug Administration.⁸⁶ Before this, the first synthetic antibiotics to be developed against Gram-negative bacteria were quinolones, in 1962.⁸⁷ Apparently, then, barriers exist that disincentivize further antibiotic development—barriers that may be economical, regulatory, and scientific.⁴ From a technical perspective, finding new classes of antibiotics that are safe, have acceptable pharmacokinetic properties, and are appropriately active is a challenging issue.⁴ Additionally, the profit margins for producing antibiotics are relatively low given the high cost for production and the lengthy timeline for research, testing, and approval.⁴

Figure 10: **Antibiotic development between 2013 and 2019.** Adapted from Laxminarayan et al. Source: Laxminarayan, R. et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. The Lancet Infectious Diseases 20, e51–e60 (2020).

Appendix 1 Country Dashboards

Country Dashboards

The 2010–2020 decade witnessed an unprecedented global political coordination for control of antimicrobial resistance. The Covid-19 pandemic has undermined antimicrobial stewardship programs as antimicrobials continue to be prescribed for viruses. Current investments in public health largely favor AMR-centric studies, including research, new product development, and clinical programs. It is imperative to collect a set of standardized indicators that allow countries to set measurable goals and track national progress.

'The State of the World's Antibiotics Country Dashboards' show the status of antibiotic resistance and use in humans and animals across 40 countries. AMR-relevant measures characterize each country, representing four indicator categories: (1) policy indicators; (2) antimicrobial resistance indicators; (3) antimicrobial use indicators; and (4) public health indicators. Each indicator category, in turn, consists of a battery of specific indicators. Where available, scores for the Drug Resistance Index, an aggregate measure of antibiotic effectiveness, for two groups of important bacterial pathogens have also been provided. Indicator values are based on current data.

The dashboards are designed to help countries assess and track their AMR status over time and in relation to other countries, and then prioritize actions.

Argentina

Latin America & Caribbean | Upper-middle income Policy Indicators* **Enrolment in Global Antimicrobial** National Action Plan Resistance Surveillance System (GLASS) on AMR (NAP) Published AMU surveillance AMU surveillance in animals in humans AMR surveillance AMR surveillance in animals in humans *As per information available by December 2020 Antimicrobial Resistance Indicators* Humans 20.39% of isolates tested of isolates of isolates tested 45.29% 20.98% 0 tested **MRSA** CRE **ESBL** Methicillin-resistant Staphylococcus aureus 3G cephalosporin-resistant Carbapenem-resistant Klebsiella pneumoniae Escherichia coli N/A N/A DRI DRI Drug Resistance Index for Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli WHO Critical pathogens 2020

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

<i>Salmonella</i> spp.	
Ampicillin	0
Ciprofoxacin	0
Colistin	0
Tetracycline	0

E.coli	
Ampicillin	25%
Ciprofoxacin	N/A
Colistin	49%
Tetracycline	22.5%

*As per information available by December 2020

Argentina

1438.92

1562.82

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	243	Per Capita Use, 2010 (DDD)	5.91		
Total Use, 2020 (DDDs in Mill)	338	Per Capita Use, 2020 (DDD)	7.43		
Change in total use, 2010-20 (DDDs in Mill)	94.36	Change in per capita use, 2010-20 (DDD)	1.52	Animals	
% Change in total use, 2010-20	38.72%	% Change in per capita use, 2010-2020	25.63%	Estimated Total 143	
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Lice 2020 (Tennes)	
Regional average of % change in total use, 2010-20	26.09%	Regional average of % change in per capita use, 2010-20	11.67%	Estimated Total Antimicrobial Use, 2030 (Tonnes)	

Public Health Indicators

% of children vaccinated (2019)

8.2 **Infant Mortality Rate** per 1,000 live births (2019)

124.22 **Under-five deaths** from diarrheal diseases (2017)

99.08 Access to improved

drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

12.93

Under-five pneumococcal death rate per 100,000 children (2017)

29 **Incidence of tuberculosis** per 100,000 people . (2019)

96.77 Access to improved sanitation facilities (%) N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure % of current health

expenditure (2018)

\$1127.91

Current health expenditure per capita (2018)

Australia

East Asia & Pacific | High income

Policy Indicators*

Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

of isolates 19.01 0 tested **MRSA** Methicillin-resistant Staphylococcus aureus

> N/A DRI Drug Resistance Index for WHO Critical pathogens

N/A DRI

of isolates

00.80% of Isola

Carbapenem-resistant Klebsiella pneumoniae

CRE

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan

AMU surveillance in animals

AMR surveillance

11

ESBL

Escherichia coli

of isolates

0 tested

3G cephalosporin-resistant

in animals

on AMR (NAP) Published

Note:

a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.

2020

- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

•	Salmonella spp		E.coli	
	Ampicillin	N/A	Ampicillin	N/A
	Ciprofoxacin	N/A	Ciprofoxacin	N/A
	Colistin	N/A	Colistin	N/A
	Tetracycline	N/A	Tetracycline	N/A

*As per information available by December 2020
Australia

Antimicrobial Use I	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	238	Per Capita Use, 2010 (DDD)	10.84	
Total Use, 2020 (DDDs in Mill)	289	Per Capita Use, 2020 (DDD)	11.40	
Change in total use, 2010-20 (DDDs in Mill)	50.29	Change in per capita use, 2010-20 (DDD)	0.56	Animals
% Change in total use, 2010-20	21.05%	% Change in per capita use, 2010-2020	5.17%	Estimated Total 306.30 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	158.87%	Regional average of % change in per capita use, 2010-20	139.61%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.1 **Infant Mortality Rate** per 1,000 live births (2019)

9.92 **Under-five deaths** from diarrheal diseases (2017)

99.97 Access to improved

drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

2.27 Under-five pneumococcal death rate per 100,000 children (2017)

6.9 **Incidence of tuberculosis** per 100,000 people (2019)

99.99 Access to improved sanitation facilities (%) (2017)

N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure % of current health expenditure

(2018)

\$5425.34

Austria

Europe & Central Asia| High income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Austria

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	63	Per Capita Use, 2010 (DDD)	7.63	
Total Use, 2020 (DDDs in Mill)	57	Per Capita Use, 2020 (DDD)	6.61	
Change in total use, 2010-20 (DDDs in Mill)	-6.16	Change in per capita use, 2010-20 (DDD)	-1.02	¥ A
% Change in total use, 2010-20	-9.65%	% Change in per capita use, 2010-2020	L3.37%	Estimated Antimicro
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Antimicro 2030 (Toni

Animals

d Total obial 0 (Tonnes)

44.36

d Total obial Use, nnes)

43.22

Public Health Indicators

% of children vaccinated (2019)

2.8 **Infant Mortality Rate** per 1,000 live births (2019)

2.08 **Under-five deaths** from diarrheal diseases (2017)

100.00

Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

1.02

Under-five pneumococcal death rate per 100,000 children (2017)

6.2 **Incidence of tuberculosis** per 100,000 people . (2019)

99.97 Access to improved sanitation facilities (%)

(2017)

N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$ 5326.44

Bangladesh

South Asia | Lower middle income

Policy Indicators*

Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

N/A MRSA Methicillin-resistant Staphylococcus aureus

> N/A DRI Drug Resistance Index for WHO Critical pathogens 2020

N/A

Carbapenem-resistant Klebsiella pneumoniae

N/A

CRE

DRI Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli* 2020

National Action Plan on AMR (NAP) Published

AMU surveillance in animals

AMR surveillance

in animals

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Bangladesh

165.39

180.93

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	590	Per Capita Use, 2010 (DDD)	3.89	
Total Use, 2020 (DDDs in Mill)	755	Per Capita Use, 2020 (DDD)	4.43	
Change in total use, 2010-20 (DDDs in Mill)	165.04	Change in per capita use, 2010-20 (DDD)	0.54	Animals
% Change in total use, 2010-20	27.97%	% Change in per capita use, 2010-2020	13.82%	Estimated Total 165
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	38.34%	Regional average of % change in per capita use, 2010-20	20.44%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

(2019)

2.34%

Current health expenditure

6.8 **Infant Mortality Rate** per 1,000 live births (2019)

2343.18 **Under-five deaths** from diarrheal diseases (2017)

93.68

Access to improved drinking water source (%) (2017)

0.5 Physicians per 1,000 people (2018)

26.32

Under-five pneumococcal death rate per 100,000 children (2017)

221 **Incidence of tuberculosis** per 100,000 people (2019)

90.74 Access to improved

(2017)

sanitation facilities (%)

(2017) 0.4 Nurses and midwives

including soap and water (%)

Access to basic handwashing facilities

N/A

per 1,000 people

(2018)

Domestic general government health expenditure % of general government expenditure

(2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$41.91 **Current health**

expenditure per capita (2018)

% of GDP

(2018)

Brazil

Latin America & Caribbean | Upper middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Brazil

Antimicro	bial	Use	Indicators
/	S I G I	000	in alcaretor 5

Total Use, 2010 (DDDs in Mill)	1085	Per Capita Use, 2010 (DDD)	5.46	
Total Use, 2020 (DDDs in Mill)	1906	Per Capita Use, 2020 (DDD)	8.83	
Change in total use, 2010-20 (DDDs in Mill)	820.85	Change in per capita use, 2010-20 (DDD)	3.36	Animals
% Change in total use, 2010-20	75.61%	% Change in per capita use, 2010-2020	61.48%	Estimated Total 7533.67
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	26.09%	Regional average of % change in per capita use, 2010-20	11.67%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

25.6 Infant Mortality Rate per 1,000 live births (2019)

752.71 **Under-five deaths** from diarrheal diseases (2017)

91.47

Access to improved drinking water source (%) (2017)

2.1 Physicians per 1,000 people (2018)

129

Under-five pneumococcal death rate per 100,000 children (2017)

46 **Incidence of tuberculosis** per 100,000 people (2019)

75.74

Access to improved sanitation facilities (%) (2017)

47.78 Access to basic

handwashing facilities including soap and water (%) (2017)

10.1 Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$848.39

Current health expenditure per capita (2018)

Note: N/A stands for Not Applicable

Bulgaria

Europe & Central Asia | Upper-middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Bulgaria

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	59	Per Capita Use, 2010 (DDD)
Total Use, 2020 (DDDs in Mill)	77	Per Capita Use, 2020 (DDD)
Change in total use, 2010-20 (DDDs in Mill)	18.19	Change in per capita use, 2010-20 (DDD)
% Change in total use, 2010-20	30.51%	% Change in per capita use, 2010-2020
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20
Regional average of % change in total use, 2010-20	81.85%	Regional average of % chang in per capita use, 2010-20

8.06	
11.24	
3.19	Animals
39.52%	Estimated Total 48.35
35.12%	Use, 2020 (Tonnes)
^{ge} 22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

5.6 **Infant Mortality Rate** per 1,000 live births (2019)

8.35 **Under-five deaths** from diarrheal diseases (2017)

99.11 Access to improved

drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

19.25

Under-five pneumococcal death rate per 100,000 children (2017)

21 **Incidence of tuberculosis** per 100,000 people (2019)

100.00

Access to improved sanitation facilities (%) (2017)

N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$689.91

Canada

North America | High income

Policy Indicators*

Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

N/A **MRSA** Methicillin-resistant Staphylococcus aureus

> N/A DRI

CRE

Carbapenem-resistant Klebsiella pneumoniae

Drug Resistance Index for WHO Critical pathogens 2020

N/A DRI

of isolates

0 tested

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan

AMU surveillance in animals

AMR surveillance

of isolates

8.93% of Isola

Escherichia coli

3G cephalosporin-resistant

ESBL

in animals

on AMR (NAP) Published

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

E.coli	
Ampicillin	N/A
Ciprofoxacin	N/A
Colistin	N/A
Tetracycline	N/A

Canada

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	243	Per Capita Use, 2010 (DDD)	7.16
Total Use, 2020 (DDDs in Mill)	261	Per Capita Use, 2020 (DDD)	6.97
Change in total use, 2010-20 (DDDs in Mill)	17.61	Change in per capita use, 2010-20 (DDD)	-0.19
% Change in total use, 2010-20	7.23%	% Change in per capita use, 2010-2020	-2.67%
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%
Regional average of % change in total use, 2010-20	-6.27%	Regional average of % change in per capita use, 2010-20	-14.09%

Antimicrobial Use, 4.09% 2030 (Tonnes)

966.02 Antimicrobial Use, 2020 (Tonnes)

Animals

Estimated Total

Estimated Total

1023.81

Public Health Indicators

% of children vaccinated (2019)

4.2 **Infant Mortality Rate** per 1,000 live births (2019)

17.22 **Under-five deaths** from diarrheal diseases (2017)

99.44 Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

2.34 Under-five pneumococcal death rate per 100,000 children (2017)

5.5 **Incidence of tuberculosis** per 100,000 people (2019)

99.29 Access to improved sanitation facilities (%) N/A

Access to basic handwashing facilities including soap and water (%) (2017)

Nurses and midwives per 1,000 people

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure % of current health

expenditure (2018)

\$4994.90

China

East Asia & Pacific | Upper middle income

N/A DRI Drug Resistance Index for WHO Critical pathogens 2020 N/A dri

Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli* 2020

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

China

Humans	5			
Total Use, 2010 (DDDs in Mill)	2262	Per Capita Use, 2010 (DDD)	1.69	
Total Use, 2020 (DDDs in Mill)	8990	Per Capita Use, 2020 (DDD)	6.43	
Change in total use, 2010-20 (DDDs in Mill)	6727.46	Change in per capita use, 2010-20 (DDD)	4.74	

297.32%

74.49%

158.87%

Estimated Total Antimicrobial	43024.2
Use, 2020 (Tonnes)	

Estimated Total Antimicrobial Use, 2030 (Tonnes)

45038.85

Δ

Public Health Indicators

% Change in total use,

in total use, 2010-20

in total use, 2010-20

Global average of % change

Regional average of % change

2010-20

Antimicrobial Use Indicators

% of children vaccinated (2019)

31.9 **Infant Mortality Rate** per 1,000 live births (2019)

% Change in per capita

Global average of % change

Regional average of % change 139.61%

in per capita use, 2010-20

in per capita use, 2010-20

use, 2010-2020

9551.78 **Under-five deaths** from diarrheal diseases (2017)

67.98

Access to improved drinking water source (%)

2.5 **Physicians** per 1,000 people (2018)

146.5

Under-five pneumococcal death rate per 100,000 children (2017)

58 **Incidence of tuberculosis** per 100,000 people (2019)

280.40%

35.12%

51.18

Access to improved sanitation facilities (%) 24.65 Access to basic

handwashing facilities including soap and water (%) (2017)

N/A **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$501.06

Croatia

Europe & Central Asia | Upper middle income

Policy Indicators*

AMR surveillance

in humans

06.77

Carbapenem-resistant

CRE

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

26.42% of isolates tested MRSA Methicillin-resistant *Staphylococcus aureus*

47.46 Klebsiella pneumoniae

DRI Drug Resistance Index for WHO Critical pathogens 2020 51.16 DRI Drug Resistanc

of isolates

0 tested

Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli*

AMR surveillance

15.67

Escherichia coli

3G cephalosporin-resistant

ESBL

% of isolates tested

in animals

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Croatia

21.45

22.33

	Antimicro	bial Use	e Indicators	s
--	-----------	----------	--------------	---

Total Use, 2010 (DDDs in Mill)	45	Per Capita Use, 2010 (DDD)	10.30	
Total Use, 2020 (DDDs in Mill)	40	Per Capita Use, 2020 (DDD)	9.76	
Change in total use, 2010-20 (DDDs in Mill)	-5.06	Change in per capita use, 2010-20 (DDD)	-0.54	Animals
% Change in total use, 2010-20	-11.11%	% Change in per capita use, 2010-2020	-5.21%	Estimated Total 21.
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

4.1 **Infant Mortality Rate** per 1,000 live births (2019)

1.79 **Under-five deaths** from diarrheal diseases (2017)

99.59 Access to improved

drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

1.76

Under-five pneumococcal death rate per 100,000 children (2017)

8 **Incidence of tuberculosis** per 100,000 people (2019)

99.02 Access to improved sanitation facilities (%)

(2017)

N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$1014.22

Ecuador

Latin America & Caribbean |Low- & lower-middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

E.coli Ampicillin 27% Ciprofoxacin 18% Colistin N/A Tetracycline 47%

Ecuador

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	92	Per Capita Use, 2010 (DDD)	6.53
Total Use, 2020 (DDDs in Mill)	98	Per Capita Use, 2020 (DDD)	5.67
Change in total use, 2010-20 (DDDs in Mill)	5.33	Change in per capita use, 2010-20 (DDD)	-0.86
% Change in total use, 2010-20	5.74%	% Change in per capita _13 use, 2010-2020	3.24%
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%
Regional average of % change in total use, 2010-20	26.09%	Regional average of % change in per capita use, 2010-20	11.67%

Animals

Estimated Total Antimicrobial Use, 2020 (Tonnes) 259.55

Estimated Total Antimicrobial Use, 2030 (Tonnes) 291.80

Public Health Indicators

% of children vaccinated (2019)

12.0 Infant Mortality Rate per 1,000 live births (2019)

149.42 Under-five deaths from diarrheal diseases (2017)

94.11 Access to improved

drinking water source (%) (2017)

N/A Physicians per 1,000 people (2018)

51.06

Under-five pneumococcal death rate per 100,000 children (2017)

46 Incidence of tuberculosis per 100,000 people (2019)

97.06

Access to improved sanitation facilities (%) (2017) Access to basic handwashing facilities including soap and water (%) (2017)

80.63

2.5 Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$ 516.25

France

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Animals

477.59

456.79

France

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	822	Per Capita Use, 2010 (DDD)	12.65	
Total Use, 2020 (DDDs in Mill)	921	Per Capita Use, 2020 (DDD)	13.53	
Change in total use, 2010-20 (DDDs in Mill)	98.43	Change in per capita use, 2010-20 (DDD)	0.88	Anima Anima
% Change in total use, 2010-20	11.96%	% Change in per capita use, 2010-2020	6.96%	Estimated Total Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.8 **Infant Mortality Rate** per 1,000 live births (2019)

27.60**Under-five deaths** from diarrheal diseases (2017)

100

Access to improved drinking water source (%) (2017)

3.3 Physicians per 1,000 people (2018)

1.17 Under-five pneumococcal death rate per 100,000 children (2017)

8.7 **Incidence of tuberculosis** per 100,000 people . (2019)

100Access to improved sanitation facilities (%) N/A Access to basic handwashing facilities including soap and water (%) (2017)

11.5Nurses and midwives per 1,000 people (2018)

health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure % of current health expenditure

(2018)

\$4690.07

Germany

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Germany

773.73

792.64

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	571	Per Capita Use, 2010 (DDD)	6.98	
Total Use, 2020 (DDDs in Mill)	505	Per Capita Use, 2020 (DDD)	6.24	
Change in total use, 2010-20 (DDDs in Mill)	-65.11	Change in per capita use, 2010-20 (DDD)	-0.73	Animals
% Change in total use, 2010-20	-11.40%	% Change in per capita _1 use, 2010-2020	0.51%	Estimated Total 773
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.2 **Infant Mortality Rate** per 1,000 live births (2019)

18.53 **Under-five deaths** from diarrheal diseases (2017)

100

Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

1.29 Under-five pneumococcal death rate

per 100,000 children (2017)

5.8 **Incidence of tuberculosis** per 100,000 people (2019)

100

Access to improved sanitation facilities (%)

(2017) N/A

including soap and water (%)

Access to basic handwashing facilities

Nurses and midwives per 1,000 people

N/A

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure % of current health

expenditure (2018)

\$5472.20

Greece

Europe & Central Asia| High income

Policy Indicators*

AMU surveillance

AMR surveillance

in humans

in humans

Enrolment in Global Antimicrobial

Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

36.37% of isolates tested MRSA Methicillin-resistant Staphylococcus aureus

> 56.03 DRI Drug Resistance Index for WHO Critical pathogens 2020

60.29 DRI

Carbapenem-resistant Klebsiella pneumoniae

of isolates

0 tested

Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli* 2020

National Action Plan

AMU surveillance in animals

AMR surveillance

ESBL

Escherichia coli

of isolates

0 tested

3G cephalosporin-resistant

in animals

on AMR (NAP) Published

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.

64

CRE

c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Animals

118.10

122.25

Greece

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	160	Per Capita Use, 2010 (DDD)	14.44	
Total Use, 2020 (DDDs in Mill)	181	Per Capita Use, 2020 (DDD)	17.01	
Change in total use, 2010-20 (DDDs in Mill)	20.94	Change in per capita use, 2010-20 (DDD)	2.56	Anima Anima
% Change in total use, 2010-20	13.03%	% Change in per capita 1 use, 2010-2020	7.73%	Estimated Total Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

% of children vaccinated (2019)

3.3 **Infant Mortality Rate** per 1,000 live births (2019)

1.00**Under-five deaths** from diarrheal diseases (2017)

100Access to improved

drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

3.78

Under-five pneumococcal death rate per 100,000 children (2017)

4.3Incidence of tuberculosis per 100,000 people (2019)

100Access to improved sanitation facilities (%) N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$1566.90

India

South Asia | Low- & lower-middle income

Policy Indicators*

AMU surveillance

AMR surveillance

in humans

in humans

Enrolment in Global Antimicrobial

Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

69.97% of isolates tested MRSA Methicillin-resistant Staphylococcus aureus 72.06% of isolates cree Carbapenem-resistant

Carbapenem-resistant Klebsiella pneumoniae 87.71% of isolates ESBL 3G cephalosporin-resistant Escherichia coli

N/A DRI Drug Resistance Index for M

National Action Plan on AMR (NAP) Published

AMU surveillance in animals

AMR surveillance

in animals

Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli* 2020

Note:

a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.

N/A

DRI

2020

- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Drug Resistance Index for

WHO Critical pathogens

Animals

India

2160.02

2236.74

Antimicro	hial	I Ise I	Indi	icators
Anumero	piai	036	IIIUI	cators

Total Use, 2010 (DDDs in Mill)	5411	Per Capita Use, 2010 (DDD)	4.40	
Total Use, 2020 (DDDs in Mill)	7976	Per Capita Use, 2020 (DDD)	5.74	
Change in total use, 2010-20 (DDDs in Mill)	2564.77	Change in per capita use, 2010-20 (DDD)	1.35	Animals
% Change in total use, 2010-20	47.40%	% Change in per capita 3 use, 2010-2020	0.64%	Estimated Total 216
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	
Regional average of % change in total use, 2010-20	38.34%	Regional average of % change in per capita use, 2010-20	20.44%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

28.3 Infant Mortality Rate per 1,000 live births (2019)

102677.89

Under-five deaths from diarrheal diseases (2017)

93.44

Access to improved drinking water source (%) (2017)

0.9 Physicians per 1,000 people (2018)

143.37

Under-five pneumococcal death rate per 100,000 children (2017)

193 Incidence of tuberculosis per 100,000 people (2019)

72.05 Access to improved

sanitation facilities (%) (2017)

> 1.7 Nurses and midwives

59.54

Access to basic handwashing facilities

including soap and water (%)

(2017)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$ 72.83 Current health

Current health expenditure per capita (2018)

Note: N/A stands for Not Applicable

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.

E.coli

c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Ampicillin95%Ciprofoxacin20%ColistinN/ATetracycline40%

Indonesia

Antimicrobial Use Ir	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	959	Per Capita Use, 2010 (DDD)	3.97	
Total Use, 2020 (DDDs in Mill)	582	Per Capita Use, 2020 (DDD)	2.14	
Change in total use, 2010-20 (DDDs in Mill)	-377.07	Change in per capita use, 2010-20 (DDD)	-1.83	Animals
% Change in total use, 2010-20	-39.30%	% Change in per capita use, 2010-2020	-46.05%	Estimated Total 761.27 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	38.34%	Regional average of % change in per capita use, 2010-20	20.44%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

20.2 Infant Mortality Rate per 1,000 live births (2019)

10568.42

Under-five deaths from diarrheal diseases (2017)

90.76

Access to improved drinking water source (%) (2017)

0.4 Physicians per 1,000 people (2018)

51.89

Under-five pneumococcal death rate per 100,000 children (2017)

312 Incidence of tuberculosis per 100,000 people (2019)

85.37 Access to improved sanitation facilities (

sanitation facilities (%) (2017)

including soap and water (%) (2017)

handwashing facilities

64.2

Access to basic

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$ 111.68

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Italy

Antimicrobial Use I	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	694	Per Capita Use, 2010 (DDD)	11.71	
Total Use, 2020 (DDDs in Mill)	640	Per Capita Use, 2020 (DDD)	10.00	
Change in total use, 2010-20 (DDDs in Mill)	-53.97	Change in per capita use, 2010-20 (DDD)	-1.15	Animals
% Change in total use, 2010-20	7.77%%	% Change in per capita use, 2010-2020	-9.78%	Estimated Total 1057.18 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

2.7 **Infant Mortality Rate** per 1,000 live births (2019)

12.86 **Under-five deaths** from diarrheal diseases (2017)

99.44 Access to improved drinking water source (%)

(2017)

4.0 Physicians per 1,000 people (2018)

1.43 Under-five pneumococcal death rate per 100,000 children (2017)

7.1 Incidence of tuberculosis per 100,000 people (2019)

98.87 Access to improved sanitation facilities (%) (2017)

handwashing facilities including soap and water (%) (2017)

Nurses and midwives per 1,000 people

N/A

Access to basic

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$2989.00

Kenya

Sub-Saharan Africa | Lower middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Kenya

390.62

464.22

Antimicrobial Use I	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	183	Per Capita Use, 2010 (DDD)	4.56	
Total Use, 2020 (DDDs in Mill)	387	Per Capita Use, 2020 (DDD)	7.43	
Change in total use, 2010-20 (DDDs in Mill)	203.89	Change in per capita use, 2010-20 (DDD)	2.87	Animals
% Change in total use, 2010-20	110.97%	% Change in per capita use, 2010-2020	63.03%	Estimated Total 39(
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)

in per capita use, 2010-20

Regional average of % change

Regional average of % change 71.99% in total use, 2010-20

Public Health Indicators

57

57

57

40

% of children vaccinated

60

80 100

DTP3

HepB3

Hib3

PCV3

RotaC

n/a

0

(2019)

20

74.	2		

Infant Mortality Rate per 1,000 live births (2019)

104266.88

Under-five deaths from diarrheal diseases (2017)

77.94

Access to improved drinking water source (%) (2017)

0.1Physicians per 1,000 people (2018)

8.55%

expenditure

(2018)

444.38

Under-five pneumococcal death rate per 100,000 children (2017)

267 Incidence of tuberculosis per 100,000 people . (2019)

35.67

59.68

Access to improved sanitation facilities (%) Access to basic handwashing facilities including soap and water (%) (2017)

1.1**Nurses and midwives** per 1,000 people (2018)

41.94

Estimated Total

2030 (Tonnes)

Antimicrobial Use,

Out-of-pocket expenditure

% of current health expenditure (2018)

\$88.39

Latvia

Europe & Central Asia | Upper-middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

E.coliAmpicillin29.5%Ciprofoxacin55.5%Colistin0Tetracycline19.5%

Latvia

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	8	Per Capita Use, 2010 (DDD)	4.19	
Total Use, 2020 (DDDs in Mill)	14	Per Capita Use, 2020 (DDD)	7.41	
Change in total use, 2010-20 (DDDs in Mill)	5.49	Change in per capita use, 2010-20 (DDD)	3.22	
% Change in total use, 2010-20	62.54%	% Change in per capita 76 use, 2010-2020	.93%	E
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	ί
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	E 4 2

Estimated Total Antimicrobial Use, 2020 (Tonnes)

Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.1 Infant Mortality Rate per 1,000 live births (2019)

0.64 Under-five deaths from diarrheal diseases (2017)

99.31 Access to improved drinking water source (%) (2017)

N/A Physicians per 1,000 people (2018)

5.89

Under-five pneumococcal death rate per 100,000 children (2017)

26 Incidence of tuberculosis per 100,000 people (2019)

94.33 Access to improved sanitation facilities (%) (2017) N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$ 1101.49

Lithuania

Europe & Central Asia| Upper-middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

E.coliAmpicillin84.9%Ciprofoxacin80.6%Colistin0Tetracycline53.8%

Lithuania

11.45

10.93

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	22	Per Capita Use, 2010 (DDD)	7.19	
Total Use, 2020 (DDDs in Mill)	24	Per Capita Use, 2020 (DDD)	8.53	
Change in total use, 2010-20 (DDDs in Mill)	1.83	Change in per capita use, 2010-20 (DDD)	1.33	Animals
% Change in total use, 2010-20	8.21%	% Change in per capita use, 2010-2020	18.55%	Estimated Total Antimicrobial Use, 2020 (Tonnes)
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.0 **Infant Mortality Rate** per 1,000 live births (2019)

1.06**Under-five deaths** from diarrheal diseases (2017)

97.54 Access to improved drinking water source (%) (2017)

6.4 Physicians per 1,000 people (2018)

7.91

Under-five pneumococcal death rate per 100,000 children (2017)

42 Incidence of tuberculosis per 100,000 people . (2019)

95.46 Access to improved sanitation facilities (%) (2017)

handwashing facilities including soap and water (%) (2017)

Nurses and midwives per 1,000 people (2018)

N/A

Access to basic

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$1249.25

Mexico

Latin America & Caribbean | Upper-middle income

Policy Indicators*

Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)

AMU surveillance Ν/Α in humans

AMR surveillance N/A in humans

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

13.83 CRE Carbapenem-resistant Klebsiella pneumoniae

of isolates 0 tested

66.21

DRI

57.81% of isolates tested **ESBL** 3G cephalosporin-resistant Escherichia coli

Ν/Α

Drug Resistance Index for WHO Critical pathogens

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan on AMR (NAP) Published

AMU surveillance

AMR surveillance

in animals

in animals

Note:

a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.

DRI

2020

68.73

- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005-2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Mexico

Antimicro	bial	Usel	Ind	icators
	Siui	030		icutor 5

Total Use, 2010 (DDDs in Mill)	356	Per Capita Use, 2010 (DDD)	3.01	
Total Use, 2020 (DDDs in Mill)	248	Per Capita Use, 2020 (DDD)	1.84	
Change in total use, 2010-20 (DDDs in Mill)	-108.30	Change in per capita use, 2010-20 (DDD)	-1.16	Animals
% Change in total use, 2010-20	-30.36%	% Change in per capita	38.74%	Estimated Total 1668.41
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	26.09%	Regional average of % change in per capita use, 2010-20	11.67%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

12.2 **Infant Mortality Rate** per 1,000 live births (2019)

1246.58 **Under-five deaths** from diarrheal diseases (2017)

99.32 Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

28.06

Under-five pneumococcal death rate per 100,000 children (2017)

23 **Incidence of tuberculosis** per 100,000 people (2019)

97.80 Access to improved sanitation facilities (%)

(2017)

87.84

Access to basic handwashing facilities including soap and water (%) (2017)

2.4 Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$519.61

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Nepal

Antimicrol	hial	IIse	Ind	icators
AITUILICIU	Jiai	USC	niu	icators

Total Use, 2010 (DDDs in Mill)	122	Per Capita Use, 2010 (DDD)	4.56	
Total Use, 2020 (DDDs in Mill)	224	Per Capita Use, 2020 (DDD)	7.43	
Change in total use, 2010-20 (DDDs in Mill)	101.75	Change in per capita use, 2010-20 (DDD)	2.87	Anima Anima
% Change in total use, 2010-20	83.10%	% Change in per capita use, 2010-2020	63.03%	Estimated Total Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	38.34%	Regional average of % change in per capita use, 2010-20	20.44%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

25.6 **Infant Mortality Rate** per 1,000 live births (2019)

3061.52 **Under-five deaths** from diarrheal diseases (2017)

98.43

Access to improved drinking water source (%) (2017)

0.7 Physicians per 1,000 people (2018)

134.8

Under-five pneumococcal death rate per 100,000 children (2017)

238 **Incidence of tuberculosis** per 100,000 people (2019)

70.88 Access to improved

sanitation facilities (%) (2017)

handwashing facilities including soap and water (%) (2017)

Animals

59.17

68.11

Nurses and midwives per 1,000 people (2018)

34.8

Access to basic

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$ 57.85 **Current health** expenditure

per capita (2018)

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Netherlands

190.44

197.11

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	72	Per Capita Use, 2010 (DDD)	4.37	
Total Use, 2020 (DDDs in Mill)	66	Per Capita Use, 2020 (DDD)	3.85	
Change in total use, 2010-20 (DDDs in Mill)	-6.42	Change in per capita use, 2010-20 (DDD)	-0.52	Animals
% Change in total use, 2010-20	-8.85%	% Change in per capita use, 2010-2020	11.89%	Estimated Total 19(Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.5 Infant Mortality Rate per 1,000 live births (2019)

3.86 Under-five deaths from diarrheal diseases (2017)

N/a Access to improved drinking water source (%) (2017)

N/A Physicians per 1,000 people (2018)

1.28

Under-five pneumococcal death rate per 100,000 children (2017)

5 Incidence of tuberculosis per 100,000 people (2019)

100 Access to improved sanitation facilities (%) (2017)

Access to basic handwashing facilities including soap and water (%) (2017)

Nurses and midwives per 1,000 people

N/A

health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$ 5306.53

Nigeria

Sub-Saharan Africa | Lower middle income

Policy Indicators*

AMU surveillance

AMR surveillance

in humans

in humans

Enrolment in Global Antimicrobial

Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

65.77% of isolates MRSA Methicillin-resistant Staphylococcus aureus

> N/A DRI Drug Resistance Index for WHO Critical pathogens 2020

N/A dri

of isolates

tested

42.86%

Carbapenem-resistant Klebsiella pneumoniae

CRE

Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli* 2020

National Action Plan on AMR (NAP) Published

AMU surveillance in animals

AMR surveillance

ESBL

Escherichia coli

77.27% of isolates tested

3G cephalosporin-resistant

in animals

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Nigeria

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	726	Per Capita Use, 2010 (DDD)	4.56	
Total Use, 2020 (DDDs in Mill)	1536	Per Capita Use, 2020 (DDD)	7.43	
Change in total use, 2010-20 (DDDs in Mill)	809.94	Change in per capita use, 2010-20 (DDD)	2.87	Animals
% Change in total use, 2010-20	111.51%	% Change in per capita use, 2010-2020	63.03%	Estimated Total 365.50
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	71.99%	Regional average of % change in per capita use, 2010-20	35.67%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

55.7 Infant Mortality Rate per 1,000 live births (2019)

28890.46

Under-five deaths from diarrheal diseases (2017)

92.06

Access to improved drinking water source (%) (2017)

0.3 Physicians per 1,000 people (2018)

148.16

Under-five pneumococcal death rate per 100,000 children (2017)

219 **Incidence of tuberculosis** per 100,000 people (2019)

70.05

Access to improved sanitation facilities (%) (2017)

Access to basic handwashing facilities including soap and water (%) (2017)

59.6

1.1 Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$83.75 **Current health**

expenditure per capita (2018)

Note: N/A stands for Not Applicable

Norway

Europe & Central Asia| High income

Policy Indicators*

AMU surveillance

AMR surveillance

in humans

in humans

Enrolment in Global Antimicrobial

Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

29.90 DRI Drug Resistance Index for WHO Critical pathogens 2020

17.15 DRI

of isolates

0 tested

00.2

Carbapenem-resistant Klebsiella pneumoniae

CRE

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan

AMU surveillance in animals

AMR surveillance

of isolates

07.09% of Isola tested

3G cephalosporin-resistant

ESBL

Escherichia coli

in animals

on AMR (NAP) Published

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

E.coli	
Ampicillin	9.35%
Ciprofoxacin	5.75%
Colistin	0.35%
Tetracycline	6.25%

5.94

6.05

Norway

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	29.3	Per Capita Use, 2010 (DDD)	6.00	
Total Use, 2020 (DDDs in Mill)	28.8	Per Capita Use, 2020 (DDD)	5.27	
Change in total use, 2010-20 (DDDs in Mill)	-0.53	Change in per capita use, 2010-20 (DDD)	-0.73	Animals
% Change in total use, 2010-20	-1.81%	% Change in per capita	L2.19%	Estimated Total 5.9
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

2.0 **Infant Mortality Rate** per 1,000 live births (2019)

1.05**Under-five deaths** from diarrheal diseases (2017)

100.00

Access to improved drinking water source (%) (2017)

2.9 Physicians per 1,000 people (2018)

0.72 Under-five pneumococcal death rate per 100,000 children

(2017) 3.3 **Incidence of tuberculosis** per 100,000 people (2019)

100.00

Access to improved sanitation facilities (%) (2017)

handwashing facilities including soap and water (%) (2017)

(2018)

Nurses and midwives per 1,000 people

N/A

Access to basic

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$8239.10

Pakistan

South Asia | Lower middle income

Policy Indicators*

AMR surveillance

in humans

on AMR (NAP) Published

AMR surveillance in animals

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

of isolates 55.82% 0 tested CRE

Carbapenem-resistant Klebsiella pneumoniae

Escherichia coli

N/A DRI Drug Resistance Index for WHO Critical pathogens 2020

N/A DRI

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005-2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Pakistan

Antimicrobial Use I	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	1042	Per Capita Use, 2010 (DDD)	6.13	
Total Use, 2020 (DDDs in Mill)	1799	Per Capita Use, 2020 (DDD)	8.63	
Change in total use, 2010-20 (DDDs in Mill)	756.40	Change in per capita use, 2010-20 (DDD)	2.50	Animals
% Change in total use, 2010-20	72.54%	% Change in per capita use, 2010-2020	40.76%	Estimated Total 879.15 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	38.34%	Regional average of % change in per capita use, 2010-20	20.44%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

12.4 Infant Mortality Rate per 1,000 live births (2019)

1795.33 Under-five deaths from diarrheal diseases (2017)

98.24 Access to improved

drinking water source (%) (2017)

0.9 Physicians per 1,000 people (2018)

29.24

Under-five pneumococcal death rate per 100,000 children (2017)

263 Incidence of tuberculosis per 100,000 people (2019)

88.54 Access to improved sanitation facilities (%) (2017)

Access to basic handwashing facilities including soap and water (%) (2017)

0.66 Nurses and midwives per 1,000 people (2018)

N/A

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$42.87 Current health

Poland

Europe & Central Asia | High income

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

49.78 DRI Drug Resistance Index for WHO Critical pathogens 2020

Policy Indicators*

60.21 DRI

of isolates

of Isola tested

08.96%

Carbapenem-resistant Klebsiella pneumoniae

CRE

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan on AMR (NAP) Published

AMU surveillance in animals

AMR surveillance

of isolates

18.21% or Isola

3G cephalosporin-resistant

ESBL

Escherichia coli

in animals

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005-2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Poland

Antimicrobial Use I	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	29	Per Capita Use, 2010 (DDD)	9.36	
Total Use, 2020 (DDDs in Mill)	362	Per Capita Use, 2020 (DDD)	9.60	
Change in total use, 2010-20 (DDDs in Mill)	333.09	Change in per capita use, 2010-20 (DDD)	0.24	Animals
% Change in total use, 11 2010-20	.34.96%	% Change in per capita use, 2010-2020	2.56%	Estimated Total 744.94 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.8 Infant Mortality Rate per 1,000 live births (2019)

6.28 Under-five deaths from diarrheal diseases (2017)

99.72 Access to improved drinking water source (%) (2017)

N/A Physicians per 1,000 people (2018) **3.41 Under-five pneumococcal death rate** per 100,000 children

(2017) **15** Incidence of tuberculosis per 100,000 people (2019)

99.84 Access to improved sanitation facilities (%) (2017)

N/A Access to basic handwashing facilitie

handwashing facilities including soap and water (%) (2017)

6.9 Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$ 978.74

Russia

Europe & Central Asia| Upper-middle income

Note:

a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.

N/A

DRI

2020

MRSA

Methicillin-resistant Staphylococcus aureus

b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.

CRE

Carbapenem-resistant Klebsiella pneumoniae

N/A

DRI

ESBL

Drug Resistance Index for MRSA,

CRE, and ESBL positive E.coli

Escherichia coli

3G cephalosporin-resistant

c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Drug Resistance Index for

WHO Critical pathogens

Animals

Salmonella s	spp.
Ampicillin	N/A
Ciprofoxacin	N/A
Colistin	N/A
Tetracycline	N/A

E.coli	
Ampicillin	N/A
Ciprofoxacin	N/A
Colistin	N/A
Tetracycline	N/A

Russia

4

Ω

Antimicrobial Use IndicatorsAntimicrobial Use IndicatorsImage: IndicatorsImage: IndicatorsImage: IndicatorsTotal Use, 2010 (DDDs in Mill)72.2Per Capita Use, 2010 (DDD)5.06Total Use, 2020 (DDDs in Mill)1093Per Capita Use, 2020 (DDD)7.62Change in total use, 2010-20 (DDDs in Mill)371.36Change in per capita use, 2010-20 (DDD)2.57✓ Animals% Change in total use, 2010-2051.41%% Change in per capita use, 2010-202050.80%Estimated Total Antimicrobial Use, 2010-2001789.94Global average of % change in total use, 2010-2081.85%Regional average of % change in per capita use, 2010-2022.10%Estimated Total Antimicrobial Use, 2020 (Tonnes)	Antimicrobial Uso In	dicators			
Total Use, 2010 (DDDs in Mill)72.2Per Capita Use, 2010 (DDD)5.06Total Use, 2020 (DDDs in Mill)1093Per Capita Use, 2020 (DDD)7.62Change in total use, 2010-20 (DDDs in Mill)371.36Change in per capita use, 2010-20 (DDD)2.57% Change in total use, 2010-2051.41%% Change in per capita use, 2010-202050.80%Estimated Total Antimicrobial Use, 2020 (Tonnes)Global average of % change in total use, 2010-2074.49%Global average of % change in per capita use, 2010-2035.12%Estimated Total Antimicrobial Use, 2020 (Tonnes)Regional average of % change in total use area to the change in total use, 2010-2081.85%Regional average of % change in per capita use, 2010-2020.10%	Antimicrobiar Use II				
(DDDs in Mill)7222010 (DDD)5.00Total Use, 2020 (DDDs in Mill)1093Per Capita Use, 2020 (DDD)7.62Change in total use, 2010-20 (DDDs in Mill)371.36Change in per capita use, 2010-20 (DDD)2.57✓ Animals% Change in total use, 2010-2051.41%% Change in per capita use, 2010-202050.80%Estimated Total Use, 2020 (Tonnes)Global average of % change in total use, 2010-2074.49%Global average of % change in per capita use, 2010-2035.12%Estimated Total Antimicrobial Use, 2020 (Tonnes)Regional average of % change is total use, 2010-20Regional average of % change in per capita use, 2010-2020.10%Stimated Total Antimicrobial Use, 2036.10	Humans				
(DDDs in Mill)109531009531009537.02Change in total use, 2010-20 (DDDs in Mill)371.36Change in per capita use, 2010-20 (DDD)2.57✓ Animals% Change in total use, 2010-2051.41%% Change in per capita use, 2010-202050.80%Estimated Total Use, 2020 (Tonnes)1789.94Global average of % change in total use, 2010-2074.49%Global average of % change in per capita use, 2010-2035.12%Estimated Total Antimicrobial Use, 2020 (Tonnes)2036.10Regional average of % change in use a page of % change in use here		722		5.06	
% Change in total use, 2010-2051.41%% Change in per capita use, 2010-202050.80%Estimated Total Antimicrobial Use, 2020 (Tonnes)1789.94Global average of % change in total use, 2010-2074.49%Global average of % change in per capita use, 2010-2035.12%Estimated Total Antimicrobial Use, 2020 (Tonnes)1789.94Regional average of % change in per capita use, 2010-2081.85%Regional average of % change 22.10%20.36.10		1093		7.62	
2010-2051.41%% change in per capital use, 2010-202050.80%Estimated Total Antimicrobial Use, 2020 (Tonnes)1789.94Global average of % change in total use, 2010-20Global average of % change in per capita use, 2010-2035.12%Estimated Total Antimicrobial Use, 2020 (Tonnes)1789.94Regional average of % change in per capita use, 2010-20Regional average of % change 22.10%2036.10		371.36		2.57	Animals
in total use, 2010-20 74.49% Global average of % change 35.12% Estimated Total Regional average of % change 22.10% Estimated Total Antimicrobial Use,	•	51.41%		50.80%	1/07.74
Regional average of % change 81.85% Regional average of % change 22.10% Antimicrobial Use,		74.49%	· · ·	35.12%	Use, 2020 (Tonnes)
		81.85%		² 22.10%	Antimicrobial Use,

Public Health Indicators

% of children vaccinated (2019)

4.9 **Infant Mortality Rate** per 1,000 live births (2019)

113.40 **Under-five deaths** from diarrheal diseases (2017)

N/A Access to improved

drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

10.99

Under-five pneumococcal death rate per 100,000 children (2017)

50 **Incidence of tuberculosis** per 100,000 people (2019)

90.48

Access to improved sanitation facilities (%) (2017)

N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$609.01

Saudi Arabia

Middle East & North Africa | High income

Policy Indicators*

Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

of isolates 0 tested 47.07 **MRSA** Methicillin-resistant Staphylococcus aureus

CRE Carbapenem-resistant Klebsiella pneumoniae

39.18%

N/A

of isolates

tested

3G cephalosporin-resistant Escherichia coli

ESBL

55.12% of isola tested

of isolates

National Action Plan

AMU surveillance in animals

AMR surveillance in animals

on AMR (NAP) Published

N/A DRI Drug Resistance Index for WHO Critical pathogens 2020

DRI Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

E.coli 51% Ampicillin 59% Ciprofoxacin 1% Colistin Tetracycline N/A

Saudi Arabia

Antimicropial Use ir	luicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	249	Per Capita Use, 2010 (DDD)	8.89	
Total Use, 2020 (DDDs in Mill)	486	Per Capita Use, 2020 (DDD)	14.16	
Change in total use, 2010-20 (DDDs in Mill)	236.98	Change in per capita use, 2010-20 (DDD)	5.27	Animals
% Change in total use, 2010-20	94.90%	% Change in per capita use, 2010-2020	59.31%	Estimated Total 88.08
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	131.73%	Regional average of % change in per capita use, 2010-20	93.53%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

Antimicrobial Use Indicators

% of children vaccinated (2019)

5.7 **Infant Mortality Rate** per 1,000 live births (2019)

36.48 **Under-five deaths** from diarrheal diseases (2017)

100.00 Access to improved

drinking water source (%) (2017)

2.6 Physicians per 1,000 people (2018)

1.82 Under-five pneumococcal death rate per 100,000 children (2017)

9.9 **Incidence of tuberculosis** per 100,000 people (2019)

100.00 Access to improved sanitation facilities (%) (2017)

N/A Access to basic handwashing facilities including soap and water (%)

5.4 Nurses and midwives per 1,000 people (2018)

(2017)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$1484.59

Serbia

Europe & Central Asia| Upper-middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Salmonella sp				
Ampicillin	N/A			
Ciprofoxacin	N/A			
Colistin	N/A			
Tetracycline	N/A			

E.coli	
Ampicillin	N/A
Ciprofoxacin	N/A
Colistin	N/A
Tetracycline	N/A

Serbia

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	51	Per Capita Use, 2010 (DDD)	7.07	
Total Use, 2020 (DDDs in Mill)	159	Per Capita Use, 2020 (DDD)	23.02	
Change in total use, 2010-20 (DDDs in Mill)	108.41	Change in per capita use, 2010-20 (DDD)	15.96	V
% Change in total use, 2010-20	210.33%	% Change in per capita 2. use, 2010-2020	25.77%	Estin Antii
Global average of % chang in total use, 2010-20	^e 74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use,
Regional average of % chains in total use, 2010-20	^{nge} 81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estin Antii 2030

stimated Total ntimicrobial Ise, 2020 (Tonnes)

stimated Total ntimicrobial Use, 030 (Tonnes)

N/A

Public Health Indicators

% of children vaccinated (2019)

4.6 Infant Mortality Rate per 1,000 live births (2019)

3.21 Under-five deaths from diarrheal diseases (2017)

99.22

Access to improved drinking water source (%) (2017)

N/A Physicians per 1,000 people (2018)

3.85

Under-five pneumococcal death rate per 100,000 children (2017)

14 Incidence of tuberculosis per 100,000 people (2019)

97.57 Access to improved sanitation facilities (%) (2017) N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018) \$ 617.09

Current health expenditure per capita (2018)

Note: N/A stands for Not Applicable

South Africa

Sub-Saharan Africa | Upper-middle income

Policy Indicators*

Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

of isolates 24.63 'n. tested **MRSA** Methicillin-resistant Staphylococcus aureus

of isolates 11.06 CRE Carbapenem-resistant Klebsiella pneumoniae

0 tested

of isolates 30.48% of Isola **ESBL** 3G cephalosporin-resistant Escherichia coli

N/A DRI Drug Resistance Index for WHO Critical pathogens 2020

N/A DRI

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan

AMU surveillance in animals

AMR surveillance

in animals

on AMR (NAP) Published

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

E.coli	
Ampicillin	N/A
Ciprofoxacin	N/A
Colistin	N/A
Tetracycline	N/A

South Africa

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	511	Per Capita Use, 2010 (DDD)	10.00	
Total Use, 2020 (DDDs in Mill)	478	Per Capita Use, 2020 (DDD)	8.16	
Change in total use, 2010-20 (DDDs in Mill)	-33.31	Change in per capita use, 2010-20 (DDD)	-1.92	¥ A
% Change in total use, 2010-20	-6.51%	% Change in per capita	19.04%	Estimated Antimicro
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020
Regional average of % change in total use, 2010-20	71.99%	Regional average of % change in per capita use, 2010-20	35.67%	Estimated Antimicro 2030 (Ton

d Total obial 0 (Tonnes)

872.13

d Total obial Use, nnes)

1137.82

Public Health Indicators

% of children vaccinated (2019)

27.5 **Infant Mortality Rate** per 1,000 live births (2019)

4616.31 **Under-five deaths** from diarrheal diseases (2017)

95.47

Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

75.50

Under-five pneumococcal death rate per 100,000 children (2017)

615 **Incidence of tuberculosis** per 100,000 people . (2019)

90.60

Access to improved sanitation facilities (%) (2017)

Access to basic handwashing facilities including soap and water (%)

N/A Nurses and midwives per 1,000 people (2018)

(2017)

43.99

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure % of current health expenditure

(2018)

\$ 525.96

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Spain

1804.31

1943.32

Antimicro	bial	Use	Indi	cators

Total Use, 2010 (DDDs in Mill)	566	Per Capita Use, 2010 (DDD)	12.16		
Total Use, 2020 (DDDs in Mill)	857	Per Capita Use, 2020 (DDD)	18.43		
Change in total use, 2010-20 (DDDs in Mill)	290.55	Change in per capita use, 2010-20 (DDD)	6.27	Animals	
% Change in total use, 2010-20	51.28%	% Change in per capita use, 2010-2020	51.56%	Estimated Total 18(
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)	
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)	

Public Health Indicators

% of children vaccinated (2019)

8.98%

Current health expenditure

2.6 Infant Mortality Rate per 1,000 live births (2019)

11.25 Under-five deaths from diarrheal diseases (2017)

99.93 Access to improved

drinking water source (%) (2017)

3.9 Physicians per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

1.51

(2017)

9.3

. (2019)

99.98

(2017)

per 100,000 children

per 100,000 people

Access to improved

sanitation facilities (%)

Incidence of tuberculosis

Under-five pneumococcal death rate

% of current health expenditure (2018) N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A Nurses and midwives per 1,000 people (2018)

Current health expenditure per capita (2018)

% of GDP

(2018)

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Sweden

10.24

10.01

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	51	Per Capita Use, 2010 (DDD)	5.47	
Total Use, 2020 (DDDs in Mill)	39	Per Capita Use, 2020 (DDD)	3.93	
Change in total use, 2010-20 (DDDs in Mill)	-11.46	Change in per capita use, 2010-20 (DDD)	-1.54	Animals
% Change in total use, 2010-20	-22.33%	% Change in per capita	28.18%	Estimated Total 10.
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

2.1 **Infant Mortality Rate** per 1,000 live births (2019)

2.54 **Under-five deaths** from diarrheal diseases (2017)

100.00

Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

1.21 Under-five pneumococcal death rate per 100,000 children (2017)

5.5 **Incidence of tuberculosis** per 100,000 people . (2019)

99.99 Access to improved

sanitation facilities (%) (2017)

(2017) N/A Nurses and midwives

Access to basic

handwashing facilities

including soap and water (%)

N/A

per 1,000 people

(2018)

(2018)

Domestic general government health expenditure % of general government expenditure

Out-of-pocket expenditure

% of current health expenditure (2018)

\$5981.71

Switzerland

Europe & Central Asia| High income

N/A DRI Drug Resistance Index for WHO Critical pathogens 2020

DRI Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli*

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Switzerland

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	41	Per Capita Use, 2010 (DDD)	5.25
Total Use, 2020 (DDDs in Mill)	42	Per Capita Use, 2020 (DDD)	4.98
Change in total use, 2010-20 (DDDs in Mill)	1.91	Change in per capita use, 2010-20 (DDD)	-0.26
% Change in total use, 2010-20	4.64%	% Change in per capita use, 2010-2020	-5.03%
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%

Animals

Estimated Total	32.28
Antimicrobial	02.20
Use, 2020 (Tonnes)	

Estimated Total Antimicrobial Use, 2030 (Tonnes)

33.12

Public Health Indicators

% of children vaccinated (2019)

3.6 **Infant Mortality Rate** per 1,000 live births (2019)

4.48**Under-five deaths** from diarrheal diseases (2017)

100.00

Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

1.21 Under-five pneumococcal death rate per 100,000 children (2017)

5.4 **Incidence of tuberculosis** per 100,000 people . (2019)

99.99 Access to improved

sanitation facilities (%) (2017)

Access to basic handwashing facilities including soap and water (%) (2017)

N/A (2018)

Nurses and midwives per 1,000 people

N/A

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$9870.66

Thailand

East Asia & Pacific | Low- & lower-middle income

Policy Indicators*

Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

of isolates tested **MRSA** Methicillin-resistant Staphylococcus aureus

of isolates of Isola tested 10.46% CRE

Escherichia coli

N/A DRI Drug Resistance Index for WHO Critical pathogens 2020

N/A DRI

Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan on AMR (NAP) Published

AMU surveillance in animals

AMR surveillance

in animals

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005-2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Thailand

Antimicro	bial (Jse l	Indicators
/			

Total Use, 2010 (DDDs in Mill)	475	Per Capita Use, 2010 (DDD)	7.13	
Total Use, 2020 (DDDs in Mill)	422	Per Capita Use, 2020 (DDD)	6.16	
Change in total use, 2010-20 (DDDs in Mill)	-53.31	Change in per capita use, 2010-20 (DDD)	-0.97	Animals
% Change in total use, 2010-20	-11.21%	% Change in per capita use, 2010-2020	-13.66%	Estimated Total 3832.78 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	158.87%	Regional average of % change in per capita use, 2010-20	139.61%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

7.7 **Infant Mortality Rate** per 1,000 live births (2019)

129.31 **Under-five deaths** from diarrheal diseases (2017)

100.00

Access to improved drinking water source (%) (2017)

0.8 Physicians per 1,000 people (2018)

14.98

Under-five pneumococcal death rate per 100,000 children (2017)

150**Incidence of tuberculosis** per 100,000 people . (2019)

99.94 Access to improved sanitation facilities (%) (2017)

83.92

Access to basic handwashing facilities including soap and water (%) (2017)

2.7 **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure % of current health

expenditure (2018)

\$275.92

Turkey

Europe & Central Asia| Upper-middle income

31.00% of isolate tested MRSA Methicillin-resistant *Staphylococcus aureus*

> N/A DRI Drug Resistance Index for WHO Critical pathogens

N/A dri

Drug Resistance Index for MRSA, CRE, and ESBL positive *E.coli* 2020

ESBL

Escherichia coli

3G cephalosporin-resistant

Note:

a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.

2020

b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.

CRE

Carbapenem-resistant Klebsiella pneumoniae

c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

	Salmonell	a spp.	
×.	Ampicillin		0
	Ciprofoxacin		0
	Colistin	N/A	
	Tetracycline	N/A	

*As per information available by December 2020

t

Turkey

Antimicrobial Use Indicators	Antimicro	plai	Use	Indicato	ors
------------------------------	-----------	------	-----	----------	-----

Total Use, 2010 (DDDs in Mill)	1221	Per Capita Use, 2010 (DDD)	16.88	
Total Use, 2020 (DDDs in Mill)	1622	Per Capita Use, 2020 (DDD)	19.72	
Change in total use, 2010-20 (DDDs in Mill)	401.36	Change in per capita use, 2010-20 (DDD)	2.84	Animals
% Change in total use, 2010-20	32.87%	% Change in per capita use, 2010-2020	16.80%	Estimated Total 674.82
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

8.6 **Infant Mortality Rate** per 1,000 live births (2019)

151.28 **Under-five deaths** from diarrheal diseases (2017)

98.88

Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

10.91

Under-five pneumococcal death rate per 100,000 children (2017)

16 **Incidence of tuberculosis** per 100,000 people (2019)

97.88 Access to improved sanitation facilities (%)

(2017)

N/A

Access to basic handwashing facilities including soap and water (%) (2017)

N/A Nurses and midwives per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

9.30%

Out-of-pocket expenditure

% of current health expenditure (2018)

\$389.87

UAE

Middle East & North Africa | High income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

Salmonella spp.			
Ampicillin	N/A		
Ciprofoxacin	N/A		
Colistin	N/A		
Tetracycline	N/A		

E.coli	
Ampicillin	N/A
Ciprofoxacin	N/A
Colistin	N/A
Tetracycline	N/A

UAE

Antimicrobial Use In	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	66	Per Capita Use, 2010 (DDD)	7.98	
Total Use, 2020 (DDDs in Mill)	178	Per Capita Use, 2020 (DDD)	18.17	
Change in total use, 2010-20 (DDDs in Mill)	112.02	Change in per capita use, 2010-20 (DDD)	10.19	Animals
% Change in total use, 2010-20	168.56%	% Change in per capita use, 2010-2020	127.75%	Estimated Total 11.15 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	131.73%	Regional average of % chang in per capita use, 2010-20	• <mark>93.5</mark> 3%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

6.4 **Infant Mortality Rate** per 1,000 live births (2019)

6.13 **Under-five deaths** from diarrheal diseases (2017)

100.00

Access to improved drinking water source (%) (2017)

2.5 Physicians per 1,000 people (2018)

4.03

Under-five pneumococcal death rate per 100,000 children (2017)

1 **Incidence of tuberculosis** per 100,000 people (2019)

99.35 Access to improved sanitation facilities (%) (2017)

Access to basic handwashing facilities including soap and water (%) (2017)

N/A

5.7 **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$1817.35

United Kingdom

Europe & Central Asia| High income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

United Kingdom

Antimicrobial Use Ir	ndicators			
Humans	\$			
Total Use, 2010 (DDDs in Mill)	525	Per Capita Use, 2010 (DDD)	8.38	
Total Use, 2020 (DDDs in Mill)	611	Per Capita Use, 2020 (DDD)	9.11	
Change in total use, 2010-20 (DDDs in Mill)	86.03	Change in per capita use, 2010-20 (DDD)	0.74	Animals
% Change in total use, 2010-20	16.37%	% Change in per capita use, 2010-2020	8.82%	Estimated Total 248.36 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	81.85%	Regional average of % change in per capita use, 2010-20	22.10%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

3.7 **Infant Mortality Rate** per 1,000 live births (2019)

19.49 **Under-five deaths** from diarrheal diseases (2017)

100

Access to improved drinking water source (%) (2017)

2.8 Physicians per 1,000 people (2018)

3.14

Under-five pneumococcal death rate per 100,000 children (2017)

8 **Incidence of tuberculosis** per 100,000 people (2019)

99.83 Access to improved sanitation facilities (%) (2017)

N/A Access to basic handwashing facilities including soap and water (%)

8.1 Nurses and midwives per 1,000 people (2018)

(2017)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$4315.43

United States

North America | High income

Policy Indicators*

AMU surveillance

AMR surveillance

in humans

in humans

Enrolment in Global Antimicrobial

Resistance Surveillance System (GLASS)

*As per information available by December 2020

Antimicrobial Resistance Indicators*

Humans

8.09 DRI Drug Resistance Index for WHO Critical pathogens

Carbapenem-resistant Klebsiella pneumoniae

2.98%

CRE

of isolates

26.66

tested

DRI Drug Resistance Index for MRSA, CRE, and ESBL positive E.coli

National Action Plan on AMR (NAP) Published

AMU surveillance in animals

AMR surveillance

of isolates

14.84% or isola

3G cephalosporin-resistant

ESBL

Escherichia coli

in animals

Note:

a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.

2020

- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

L	Salmonella	spp.
	Ampicillin	N/A
	Ciprofoxacin	N/A
	Colistin	N/A
	Tetracycline	N/A

E.coli	
Ampicillin	N/A
Ciprofoxacin	N/A
Colistin	N/A
Tetracycline	N/A

United States

Antimicrobial Use I	ndicators			
Humans	5			
Total Use, 2010 (DDDs in Mill)	3630	Per Capita Use, 2010 (DDD)	11.73	
Total Use, 2020 (DDDs in Mill)	2913	Per Capita Use, 2020 (DDD)	8.74	
Change in total use, 2010-20 (DDDs in Mill)	-717.78	Change in per capita use, 2010-20 (DDD)	-2.99	Animals
% Change in total use, 2010-20	-19.77%	% Change in per capita use, 2010-2020	-25.51%	Estimated Total 6596.31 Antimicrobial
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	-6.27%	Regional average of % change in per capita use, 2010-20	² -14.09%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

5.6 **Infant Mortality Rate** per 1,000 live births (2019)

353.16 **Under-five deaths** from diarrheal diseases (2017)

99.26 Access to improved drinking water source (%) (2017)

2.6 Physicians per 1,000 people (2018)

3.26

Under-five pneumococcal death rate per 100,000 children (2017)

3 **Incidence of tuberculosis** per 100,000 people . (2019)

99.97 Access to improved sanitation facilities (%) (2017)

Access to basic handwashing facilities including soap and water (%) (2017)

N/A Nurses and midwives per 1,000 people (2018)

N/A

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$10623.85

Current health expenditure per capita (2018)

Venezuela

Latin America & Caribbean | Upper-middle income Policy Indicators* **Enrolment in Global Antimicrobial** National Action Plan Resistance Surveillance System (GLASS) on AMR (NAP) Published AMU surveillance AMU surveillance Ν/Α N/A in animals in humans AMR surveillance N/A AMR surveillance N/A in animals in humans *As per information available by December 2020 Antimicrobial Resistance Indicators* Humans 33.56% of isolates tested of isolates of isolates 07.69% of Isola 54.299 Ό tested **MRSA** CRE **ESBL** Methicillin-resistant Staphylococcus aureus 3G cephalosporin-resistant Carbapenem-resistant Klebsiella pneumoniae Escherichia coli N/A N/A DRI DRI Drug Resistance Index for Drug Resistance Index for MRSA, WHO Critical pathogens CRE, and ESBL positive E.coli 2020

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

*As per information available by December 2020

E.coli	
Ampicillin	15%
Ciprofoxacin	3%
Colistin	6%
Tetracycline	8%

Venezuela

Antimicrobial Use Indicators

Total Use, 2010 (DDDs in Mill)	163	Per Capita Use, 2010 (DDD)	5.63	
Total Use, 2020 (DDDs in Mill)	229	Per Capita Use, 2020 (DDD)	6.94	
Change in total use, 2010-20 (DDDs in Mill)	66.52	Change in per capita use, 2010-20 (DDD)	1.31	Animals
% Change in total use, 2010-20	40.74%	% Change in per capita use, 2010-2020	23.23%	Estimated Total 324.21
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	26.09%	Regional average of % change in per capita use, 2010-20	11.67%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

21.0 **Infant Mortality Rate** per 1,000 live births (2019)

442.99 **Under-five deaths** from diarrheal diseases (2017)

96.20 Access to improved drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

29.24

Under-five pneumococcal death rate per 100,000 children (2017)

45 **Incidence of tuberculosis** per 100,000 people . (2019)

93.94 Access to improved sanitation facilities (%) N/A Access to basic handwashing facilities including soap and water (%) (2017)

0.9 **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$256.95

Current health expenditure per capita (2018)

Vietnam

East Asia & Pacific | Low- & lower-middle income

Note:

- a) Resistance rates include isolates categorized as either resistant or intermediate on antimicrobial susceptibility testing.
- b) The Drug Resistance Index (DRI) is an aggregate measure that combines antibiotic use and resistance into a single metric, with a value of 0 indicating 100% susceptibility and a value of 100 indicating 100% resistance. DRI values for the year 2020 are projections based on DRI values for 2005- 2015.
- c) WHO critical pathogens are ESBL positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii, & carbapenem-resistant Pseudomonas aeruginosa.

Animals

*As per information available by December 2020

Vietnam

Antimicrobial Use I				
Humans	5			
Total Use, 2010 (DDDs in Mill)	547	Per Capita Use, 2010 (DDD)	6.29	
Total Use, 2020 (DDDs in Mill)	2343	Per Capita Use, 2020 (DDD)	24.32	
Change in total use, 2010-20 (DDDs in Mill)	1796.64	Change in per capita use, 2010-20 (DDD)	18.04	Animals
% Change in total use, 2010-20	328.33%	% Change in per capita use, 2010-2020	286.52%	Estimated Total 1016.23
Global average of % change in total use, 2010-20	74.49%	Global average of % change in per capita use, 2010-20	35.12%	Use, 2020 (Tonnes)
Regional average of % change in total use, 2010-20	158.87%	Regional average of % chang in per capita use, 2010-20	°139.61%	Estimated Total Antimicrobial Use, 2030 (Tonnes)

Public Health Indicators

% of children vaccinated (2019)

15.9 **Infant Mortality Rate** per 1,000 live births (2019)

127.68 **Under-five deaths** from diarrheal diseases (2017)

94.72 Access to improved

drinking water source (%) (2017)

N/A **Physicians** per 1,000 people (2018)

31.29

Under-five pneumococcal death rate per 100,000 children (2017)

176 **Incidence of tuberculosis** per 100,000 people . (2019)

87.28 Access to improved sanitation facilities (%) (2017)

85.84 Access to basic

handwashing facilities including soap and water (%) (2017)

N/A **Nurses and midwives** per 1,000 people (2018)

Domestic general government health expenditure % of general government expenditure (2018)

Out-of-pocket expenditure

% of current health expenditure (2018)

\$151.69

Current health expenditure per capita (2018)

Appendix 2

Indicators

0

Indicators

	Public Health Indicators	se	Antimicrobial U Indicators	Resistance	Antimicrobial H Indicators	Policy Indicators
		(animals)	(humans)	(animals)	(humans)	
Access to improved drinking water source	DTP3 coverage rate	Estimated Total Antimicr- obial Use, 2020 (tonnes)	Total use, 2010 (DDDs in Mill)	Salmonella spp. & Ampicillin	MRSA (Methicillin- resistant <i>Staphylococcus</i> <i>aureus</i>)	Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)
Access to improved sanitation facilities	HepB3 coverage rate	Estimated Total Antimicro- bial Use, 2030 (tonnes)	Total use, 2020 (DDDs in Mill)	Salmonella spp. & Ciprofloxac in	CRE (Carbapenem- resistant Klebsiella pneumoniae)	National Action Plan on AMR (NAP) Published
Access to basic handwashing facilities including soap and water	Hib3 coverage rate		Change in total use, 2010-2020 (DDDs in Mill)	<i>Salmonella</i> spp. & Colistin	ESBL (Cephalosporin 3 [™] generation resistant <i>Escherichia coli</i>)	AMU surveillance in humans
Physicians (per 1,000 people)	PCV3 coverage rate		% Change in total use, 2010-2020	Salmonella spp. & Tetracycline	DRI (Drug Resistance Index for WHO Critical pathogens 2020)	AMU surveillance in animals
Nurses and midwives (per 1,000 people)	RotaC coverage rate		Global average of % change in total use, 2010-2020	<i>E. coli</i> & Ampicillin	DRI (Drug Resistance Index for MRSA, CRE, ESBL positive <i>E.coli</i> 2020)	AMR surveillance in humans
Current health expenditure (% of GDP)	Infant Mortality Rate (per 1000 live births)		Regional average of % change in total use, 2010-2020	<i>E. coli</i> & Ciprofloxacin		AMR surveillance in animals
Domestic general government health expenditure (% of general government expenditure)	Under-five pneumococcal death rate (per 100,000 children)		Per capita use, 2010 (DDD)	E. coli & Colistin		
Out-of-pocket expenditure (% of current health expenditure)	Under-five deaths from diarrheal diseases		Per capita use, 2020 (DDD)	<i>E. coli</i> & Tetracycline		
Current health expenditure per capita			Change in per capita use, 2010-2020 (DDD)			
			capita use, 2010-2020			
			% change in per capita use, 2010-2020			
			Regional average of % change in per capita use,			
Cur exp			capita use, 2010-2020 (DDD) % Change in per capita use, 2010-2020 Global average of % change in per capita use, 2010-2020 Regional average of % change in per			

Appendix 3

Indicator Description and Information Source

Indicator Description and Information Source

1. Policy Indicators

Indicator	Indicator description	Source	Weblinks
		(Dashboards reflect information available as of December 2020)	
Enrolment in Global Antimicrobial Resistance Surveillance System (GLASS)	Whether the country has enrolled in GLASS?	GLASS portal of the WHO website	https://www.who.int/glass/country -participation/en/
National Action Plan on AMR (NAP) Published	Whether the National Action Plan on AMR has been published in the country?	"Library of national action plans" portal of the WHO website	https://www.who.int/antimicrobial -resistance/national-action- plans/library/en/
AMR surveillance in humans	Whether the country has any kind of capacity for building a national surveillance system for AMR in humans?	Global Database for the Tripartite Antimicrobial Resistance (AMR) Country Self- assessment Survey (TrACSS)	http://amrcountryprogress.org/
AMR surveillance in animals	Whether the country has any kind of capacity for building a national surveillance system for AMR in animals (terrestrial/aquatic)?	Global Database for the Tripartite Antimicrobial Resistance (AMR) Country Self- assessment Survey (TrACSS)	http://amrcountryprogress.org/
AMU surveillance in humans	Whether the country has any kind of capacity for building a national monitoring system for consumption and rational use of antimicrobials in human health?	Global Database for the Tripartite Antimicrobial Resistance (AMR) Country Self- assessment Survey (TrACSS)	http://amrcountryprogress.org/
AMU surveillance in animals	Whether the country has any kind of capacity for building a national monitoring system for antimicrobials intended to be used in animals (sales/use)?	Global Database for the Tripartite Antimicrobial Resistance (AMR) Country Self- assessment Survey (TrACSS)	http://amrcountryprogress.org/

2. Antimicrobial Resistance Indicators

AMR in Humans

Indicator	Indicator description	Source	Weblinks
		(Dashboards reflect information available as of December 2020)	
MRSA (Methicillin- resistant <i>Staphylococcus</i> <i>aureus</i>)	Resistance rates of MRSA in the country	Resistance rates as available on ResistanceMap, GLASS, AGAR, ECDC, CARA, Civil Hospitals of Guadalajara, CAESAR, PROVENRA, VINARES, CHINET	https://resistancemap.cddep.org/Antibi oticResistance.php https://www.who.int/data/gho/data/th emes/topics/global-antimicrobial- resistance-surveillance-system-(glass) https://agargroup.org.au/
CRE (Carbapenem- resistant <i>Klebsiella</i> <i>pneumoniae</i>)	Resistance rates of CRE in the country	Resistance rates as available on ResistanceMap, GLASS, AGAR, ECDC, CARA, Civil Hospitals of Guadalajara, CAESAR, PROVENRA, VINARES, CHINET	https://www.ecdc.europa.eu/en/about- us/partnerships-and-networks/disease- and-laboratory-networks/ears-net http://www.can-r.com/ http://www.hcg.udg.mx/ https://www.euro.who.int/en/health- topics/disease-
ESBL (Cephalosporin 3 rd generation resistant <i>Escherichia coli</i>)	Resistance rates of ESBL positive <i>E.coli</i> in the country	Resistance rates as available on ResistanceMap, GLASS, AGAR, ECDC, CARA, Civil Hospitals of Guadalajara, CAESAR, PROVENRA, VINARES, CHINET	prevention/antimicrobial- resistance/surveillance/central-asian- and-european-surveillance-of- antimicrobial-resistance-caesar https://provenra.com.ve/#:~:text=Prog rama%20Venezolano%20de%20Vigilan cia%20de,causan%20infecciones%20en %20el%20pa%C3%ADs. https://www.sciencedirect.com/science /article/pii/S2213716519301456#:~:tex t=The%20Viet%20Nam%20Resistance %20network,across%20the%20country %20%5B8%5D. http://www.chinets.com/

^{*} Data are obtained from ResistanceMap and include only invasive isolates isolated from blood, cerebrospinal fluid or both; resistance data include all non-susceptible isolates (I+R), and only when 30 or more isolates are tested against an antibiotic; resistance rates (%) are calculated as sum of number of resistant isolates divided by sum of number of isolates tested, expressed as a percentage. This is aggregated at the country level for the latest year of available data.

DRI (Drug Resistance Index for WHO Critical pathogens 2020)	DRI value for WHO Critical pathogens	CDDEP calculations: DRI (WHO Critical pathogens) values for the year 2020 are projections based on DRI values for 2005- 2015; AMC data was obtained from IMS Midas (2005-2015)	https://resistancemap.cddep.org/DRI.php
DRI (Drug Resistance Index for MRSA, CRE, ESBL positive <i>E.coli</i> 2020)	DRI values for MRSA, CR- <i>K.pneumoniae</i> and ESBL positive <i>E.Coli</i>	CDDEP calculations: DRI (for MRSA, CRE, ESBL positive <i>E.coli</i>) values for the year 2020 are projections based on DRI values for 2005- 2015; AMC data was obtained from IMS Midas (2005-2015)	https://resistancemap.cddep.org/DRI.php

AMR in Animals

Indicator	Indicator description	Source	Weblinks
		(Dashboards reflect information available as of December 2020)	
Salmonella spp. & AmpicillinSalmonella spp. & CiprofloxacinSalmonella spp. & ColistinSalmonella spp. & TetracyclineE. coli & AmpicillinE. coli & CiprofloxacinE. coli & CiprofloxacinE. coli & CiprofloxacinE. coli & Colistin	Resistance rates of Ampicillin- resistant Salmonella spp. in animalsResistance rates of Ciprofloxacin-resistant Salmonella spp. in animalsResistance rates of Colistin- resistant Salmonella spp. in animalsResistance rates of Colistin- resistant Salmonella spp. in animalsResistance rates of Tetracycline -resistant Salmonella spp. in animalsResistance rates of Ampicillin-resistant E. coli in animalsResistance rates of Ciprofloxacin-resistant E. coli in animalsResistance rates of Ciprofloxacin-resistant E. coli in animalsResistance rates of Colistin- resistant E. coli in animalsResistance rates of Colistin- resistant E. coli in animals	CDDEP calculations: Source information was obtained from Resistance Bank and European food Safety Authority. Resistance Bank values were available for chicken, cattle, pigs and sheep; rates were averaged for the drug-bug combinations listed. European Food Safety Authority values were available for broilers, laying hens and turkeys; rates were averaged for the drug-bug combinations listed.	https://resistancebank.org/ https://www.efsa.europa.e u/en/interactive- pages/AMR-Report-2018
Tetracycline	Tetracycline -resistant <i>E. coli</i> in animals		

3. Antimicrobial Use Indicators

AMU in Humans

Indicator	Indicator description	Source	Weblinks
Total use, 2010 (DDDs in Mill)	Total use of antibiotics in 2010	Data from 'Global increase and geographic convergence in antibiotic consumption between 2000 and 2015'	https://www.pnas.org/cont ent/115/15/E3463
Total use, 2020 (DDDs in Mill)	Projected total use of antibiotics in 2020	Data from 'Global increase and geographic convergence in antibiotic consumption between 2000 and 2015'	https://www.pnas.org/ content/115/15/E3463
Change in total use, 2010-2020 (DDDs in Mill)	Change in total use of antibiotics estimated for the period 2010-2020	CDDEP calculations: x2 - x1 where x2= Projected total antibiotics use in 2020; x1= Total antibiotics use in 2010. (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463
% Change in total use, 2010-2020	% Change in total use of antibiotics estimated for the period 2010-2020	CDDEP calculations: D% = 100 (x2 - x1) / x1 where x2= Projected total antibiotics use in 2020; x1= Total antibiotics use in 2010 (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463
Regional average of % change in total use, 2010-2020	Regional average of % change in total use of antibiotics estimated for the period 2010-2020	CDDEP calculations: Countries were grouped based on regional classification; regional average of % change in total use of antibiotics was calculated as 'sum total of % change in total use of antibiotics across countries in a defined region/number of countries in that region'. (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463
Global average of % change in total use, 2010-2020	Global average of % change in total use of antibiotics estimated for the period 2010-2020	CDDEP calculations: Global average of % change in total use of antibiotics was calculated as 'sum total of % change in total use of antibiotics across all countries/ number of countries'. (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463
Per capita use, 2010 (DDD)	Per capita use of antibiotics in 2010	Data from 'Global increase and geographic convergence in antibiotic consumption between 2000 and 2015'	https://www.pnas.org/ content/115/15/E3463
Per capita use, 2020 (DDD)	Projected per capita use of antibiotics in 2020	Data from 'Global increase and geographic convergence in antibiotic consumption between 2000 and 2015'	https://www.pnas.org/ content/115/15/E3463

Change in per capita use, 2010- 2020 (DDD)	Change in per capita use of antibiotics estimated for the period 2010-2020	CDDEP calculations: Difference in per capita antibiotics' use between 2010 and 2020. (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463
% Change in per capita use, 2010- 2020	% Change in per capita use of antibiotics estimated for the period 2010-2020	CDDEP calculations: Change in per capita antibiotics use over time (D%) = $100 (x2 - x1) / x1$; where x2= Projected per capita antibiotics use in 2020; x1= Per capita antibiotics use in 2010. (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463
Regional average of % change in per capita use, 2010- 2020	Regional average of % change in per capita use of antibiotics estimated for the period 2010-2020	CDDEP calculations: Countries were grouped based on regional classification; regional average of % change in per capita use of antibiotics was calculated as sum total of % change in per capita use of antibiotics. (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463
Global average of % change in per capita use, 2010- 2020	Global average of % change in per capita use of antibiotics, estimated for the period 2010-2020	CDDEP calculations: Global average of % change in per capita use of antibiotics was calculated as: sum total of % change in per capita use of antibiotics across all countries/ number of countries. (Source information was obtained from weblink provided)	https://www.pnas.org/ content/115/15/E3463

AMU in Animals

Indicator	Indicator description	Source	Weblinks
Estimated Total Antimicrobial Use, 2020 (tonnes)	Estimated total amount of antimicrobials used in food-producing animals in the year 2020, expressed in tonnes.	Data from 'Global trends in antimicrobial use in food animals from 2017 to 2030'	https://www.mdpi.com/2079- 6382/9/12/918/htm
Estimated Total Antimicrobial Use, 2030 (tonnes)	Estimated total amount of antimicrobials used in food-producing animals in the year 2030, expressed in tonnes.	Data from 'Global trends in antimicrobial use in food animals from 2017 to 2030'	https://www.mdpi.com/2079 <u>-</u> 6382/9/12/918/htm

4. Public Health Indicators

Indicator	Indicator description	Source	Weblinks
DTP3 coverage rate	% of surviving infants who received the 3rd dose of diphtheria and tetanus toxoid with pertussis containing vaccine % of surviving infants who received the 3rd dose of hepatitis B containing vaccine following the birth dose	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC) (Data from 2019)	https://data.unicef.org/resource s/data_explorer/unicef_f/?ag= UNICEF&df=IMMUNISATION &ver=1.0&dq=&startPeriod=2 019&endPeriod=2019
HepB3 coverage rate	% of surviving infants who received the 3rd dose of hepatitis B containing vaccine following the birth dose	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC) (Data from 2019)	https://data.unicef.org/resource s/data_explorer/unicef_f/?ag= UNICEF&df=IMMUNISATION &ver=1.0&dq=&startPeriod=2 019&endPeriod=2019
Hib3 coverage rate	% of surviving infants who received the 3rd dose of Haemophilus influenzae type b containing vaccine	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC) (Data from 2019)	https://data.unicef.org/resource s/data_explorer/unicef_f/?ag= UNICEF&df=IMMUNISATION &ver=1.0&dq=&startPeriod=2 019&endPeriod=2019
PCV3 coverage rate	% of surviving infants who received the 3rd dose of pneumococcal conjugate vaccine. In countries where the national schedule recommends two doses during infancy and a booster dose at 12 months or later based on the epidemiology of disease in the country, coverage estimates may reflect the percentage of surviving infants who received two doses of PCV prior to the 1st birthday	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC) (Data from 2019)	https://data.unicef.org/resource s/data_explorer/unicef_f/?ag= UNICEF&df=IMMUNISATION &ver=1.0&dq=&startPeriod=2 019&endPeriod=2019
RotaC coverage rate	% of surviving infants who received the final recommended dose of rotavirus vaccine, which can be either the 2nd or the 3rd dose depending on the vaccine	WHO/UNICEF Estimates of National Immunization Coverage (WUENIC)	https://data.unicef.org/resource s/data_explorer/unicef_f/?ag= UNICEF&df=IMMUNISATION &ver=1.0&dq=&startPeriod=2 019&endPeriod=2019
Access to improved drinking water source	Proportion of the population using an improved drinking water source (improved sources include piped water; boreholes or tube wells; protected dug wells; protected springs; rainwater; and packaged or delivered water)	(Data from 2019) UNICEF (Data from 2017)	https://data.unicef.org/indicato r-profile/WS_PPL_W-I/

Assessed	Duen entire of the second of	INHOPE	https://dots.com/com/com/
Access to improved	Proportion of the population using an improved sanitation	UNICEF (Data from 2017)	https://data.unicef.org/resourc es/data_explorer/unicef_f/?ag
sanitation	facility (improved facilities	(Data 110111 2017)	=UNICEF&df=GLOBAL_DAT
facilities	include flush/pour flush to		AFLOW&ver=1.0&dq=.WS_PP
lacinties	piped sewerage systems, septic		L_S-
	tanks or pit latrines; ventilated		I&startPeriod=2015&endPeri
	improved pit latrines;		od=2020
	composting toilets or pit		
	latrines with slabs)		
Access to basic	The percentage of people living	World Bank	https://data.worldbank.org/ind
handwashing	in households that have a	(Data from 2017)	icator/SH.STA.HYGN.ZS?end=
facilities including	handwashing facility with soap	(2015&start=2015&view=bar
soap and water	and water available on the		
1	premises. Handwashing facilities may be fixed or mobile		
	and include a sink with tap		
	water, buckets with taps, tippy-		
	taps, and jugs or basins		
	designated for handwashing.		
	Soap includes bar soap, liquid soap, powder detergent, and		
	soapy water but does not		
	include ash, soil, sand or other		
	handwashing agents		
Infant Mortality	Infant mortality rate is defined	World Bank	https://data.worldbank.org/indi
Rate (per 1,000	as the number of infants dying	(Data from 2019)	cator/SP.DYN.IMRT.IN
live births)	before reaching one year of age,		
	per 1,000 live births in a given		
	year		
Under-five	Annual deaths from pneumonia	Our World in Data	https://ourworldindata.org/pne
pneumococcal	per 100,000 children under 5	(sourced from Global	umonia
death rate (per		Burden of Disease	
100,000 children)		Collaborative Network)	
		(Data from 2017)	
		- //	
Under-five deaths	Annual deaths from diarrheal	Our World in Data	https://ourworldindata.org/grap
from diarrheal	diseases among children under 5	(sourced from Global	her/deaths-from-diarrheal-
diseases		Burden of Disease	diseases-by-
		Collaborative Network)	age?time=earliestlatest
		(Data from 2017)	
		(2 atu 110111 2 01/)	
L			

Incidence of tuberculosis per 100,000 people	Incidence of tuberculosis is the estimated number of new and relapse tuberculosis cases arising in a given year, expressed as the rate per 100,000 population. All forms of TB are included, including cases in people living with HIV. Estimates for all years are recalculated as new information becomes available and techniques are refined, so they may differ from those published previously.	World Bank (Data from 2019)	https://data.worldbank.org/indi cator/SH.TBS.INCD
Current health expenditure per capita	Current expenditures on health per capita in current US dollars. Estimates of current health expenditures include healthcare goods and services consumed during each year	World Bank (Data from 2018)	https://data.worldbank.org/indi cator/SH.XPD.CHEX.PC.CD
Current health expenditure (% of GDP)	Level of current health expenditure expressed as a percentage of GDP. Estimates of current health expenditures include healthcare goods and services consumed during each year. This indicator does not include capital health expenditures such as buildings, machinery, IT and stocks of vaccines for emergency or outbreaks.	World Bank (Data from 2018)	https://data.worldbank.org/indi cator/SH.XPD.CHEX.GD.ZS
Domestic general government health expenditure (% of general government expenditure)	Public expenditure on health from domestic sources as a share of total public expenditure. It indicates the priority of the government to spend on health from own domestic public resources.	World Bank (Data from 2018)	https://data.worldbank.org/indi cator/SH.XPD.GHED.GE.ZS
Out-of-pocket expenditure (% of current health expenditure)	Share of out-of-pocket payments of total current health expenditures. Out-of-pocket payments are spending on health directly out-of-pocket by households.	World Bank (Data from 2018)	https://data.worldbank.org/indi cator/SH.XPD.OOPC.CH.ZS
Physicians (per 1,000 people)	Number of physicians per 1000 people (physicians include generalist and specialist medical practitioners)	World Bank (Data from 2018; N/A means data not available for 2018)	https://data.worldbank.org/indi cator/SH.MED.PHYS.ZS?end=2 018&start=2016&view=map
Nurses and midwives (per 1,000 people)	Number of nurses and midwives per 1000 people (nurses and midwives include professional nurses,	World Bank (Data from 2018; N/A means data not available for 2018)	https://data.worldbank.org/indi cator/SH.MED.NUMW.P3?end =2018&start=2016&view=map

References

- World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. (2017).
- 2. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States 2019. (2019).
- 3. Klein, E. Y., Tseng, K. K., Pant, S. & Laxminarayan, R. Tracking global trends in the effectiveness of antibiotic therapy using the Drug Resistance Index. BMJ Glob. Heal. 4, (2019).
- 4. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).
- 5. Laxminarayan, R. et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. The Lancet Infectious Diseases 20, e51–e60 (2020).
- 6. Yong, D. et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53, 5046–5054 (2009).
- 7. Li, Z., Cao, Y., Yi, L., Liu, J.-H. & Yang, Q. Emergent Polymyxin Resistance: End of an Era? Open forum Infect. Dis. 6, (2019).
- 8. Liu, Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).
- 9. Ewers, C., Bethe, A., Semmler, T., Guenther, S. & Wieler, L. H. Extended-spectrum betalactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin. Microbiol. Infect. 18, 646–655 (2012).
- 10. Public Health England. Health Protection Report: UK case of Neisseria gonorrhoeae with highlevel resistance to azithromycin and resistance to ceftriaxone acquired abroad. 12, (2018).
- 11. Victoria Government. Multi-drug resistant gonorrhoea detected in Australia. (2018).
- 12. Paterson, G. K., Harrison, E. M. & Holmes, M. A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22, 42–47 (2014).
- 13. World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report Early Implementation 2020. (2020).
- 14. Council of Canadian Academics. When Antibiotics Fail The Expert Panel on the Potential Socio-Economic Impacts of Antimicrobial Resistance in Canada.
- 15. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA

(EARS-Net) - Annual Epidemiological Report for 2019. (2020).

- 16. Tadesse, B. T. et al. Antimicrobial resistance in Africa: A systematic review. BMC Infect. Dis. 17, (2017).
- 17. World Health Organization. Global Tuberculosis Report 2020. (2020).
- 18. Center for Disease Dynamics Economics and Policy. ResistanceMap. Available at: https://resistancemap.cddep.org/. (Accessed: 25th January 2021)
- 19. Oldenkamp, R., Schultsz, C., Mancini, E. & Cappuccio, A. Filling the gaps in the global prevalence map of clinical antimicrobial resistance. Proc. Natl. Acad. Sci. 118, e2013515118 (2021).
- 20. Laxminarayan, R. & Klugman, K. P. Communicating trends in resistance using a drug resistance index. BMJ Open 1, e000135 (2011).
- 21. UNAIDS. Global HIV & AIDS Statistics 2020 fact sheet. (2020). Available at: https://www.unaids.org/en/resources/fact-sheet. (Accessed: 14th January 2021)
- 22. World Health Organization. HIV drug resistance report 2019. (2019).
- 23. Macdonald, V. et al. Prevalence of pretreatment HIV drug resistance in key populations: a systematic review and meta-analysis. Journal of the International AIDS Society 23, (2020).
- 24. World Health Organization. World Malaria Report 2020. (2020).
- 25. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).
- 26. Müller, O., Sié, A., Meissner, P., Schirmer, R. H. & Kouyaté, B. Artemisinin resistance on the Thai-Cambodian border. The Lancet 374, 1419 (2009).
- 27. Ocan, M. et al. K13-propeller gene polymorphisms in Plasmodium falciparum parasite population in malaria affected countries: A systematic review of prevalence and risk factors. Malaria Journal 18, 60 (2019).
- 28. Mathenge, P. G. et al. Efficacy and resistance of different artemisinin-based combination therapies: a systematic review and network meta-analysis. Parasitol. Int. 74, (2020).
- 29. World Health Organization. Typhoid Fact Sheet. (2018). Available at: https://www.who.int/news-room/fact-sheets/detail/typhoid. (Accessed: 14th January 2021)
- 30. Qamar, F. N. et al. Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: a matched case-control study. Lancet Infect. Dis. 18, 1368–1376 (2018).
- 31. Rasheed, M. K., Hasan, S. S., Babar, Z. U. D. & Ahmed, S. I. Extensively drug-resistant typhoid fever in Pakistan. The Lancet Infectious Diseases 19, 242–243 (2019).
- 32. Klein, E. Y. et al. Global increase and geographic convergence in antibiotic consumption

between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 115, E3463-E3470 (2018).

- 33. World Health Organization. AWaRe Classification Antibiotics. WHO (2019). Available at: http://www.who.int/medicines/news/2019/WHO_releases2019AWaRe_classification_antibiot ics/en/. (Accessed: 25th January 2021)
- 34. Klein, E. Y. et al. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–15: an analysis of pharmaceutical sales data. Lancet Infect. Dis. 21, 107–115 (2020).
- 35. Sun, L., Klein, E. Y. & Laxminarayan, R. Seasonality and Temporal Correlation between Community Antibiotic Use and Resistance in the United States. Clin. Infect. Dis. 55, 687–694 (2012).
- 36. Klein, E. Y. et al. The Impact of Influenza Vaccination on Antibiotic Use in the United States, 2010–2017. Open Forum Infect. Dis. 7, (2020).
- 37. Hsu, J. How covid-19 is accelerating the threat of antimicrobial resistance. The BMJ 369, (2020).
- 38. Arshad, M., Mahmood, S. F., Khan, M. & Hasan, R. Covid -19, misinformation, and antimicrobial resistance. The BMJ 371, (2020).
- 39. Nori, P. et al. Bacterial and fungal co-infections in COVID-19 patients hospitalized during the New York city pandemic surge. Infect. Control Hosp. Epidemiol. 42, 84–88 (2020).
- 40. Beović, B. et al. Antibiotic use in patients with COVID-19: a 'snapshot' Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 75, 3386–3390 (2020).
- 41. Versporten, A. et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob. Heal. 6, e619–e629 (2018).
- 42. Morgan, D. J., Okeke, I. N., Laxminarayan, R., Perencevich, E. N. & Weisenberg, S. Nonprescription antimicrobial use worldwide: A systematic review. The Lancet Infectious Diseases 11, 692–701 (2011).
- 43. Gasson, J., Blockman, M. & Willems, B. Antibiotic prescribing practice and adherence to guidelines in primary care in the cape town Metro district, South Africa. South African Med. J. 108, 304–310 (2018).
- 44. Sarwar, M. R., Saqib, A., Iftikhar, S. & Sadiq, T. Antimicrobial use by WHO methodology at primary health care centers: A cross sectional study in Punjab, Pakistan 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Infect. Dis. 18, 492 (2018).
- 45. Wang, J., Wang, P., Wang, X., Zheng, Y. & Xiao, Y. Use and prescription of antibiotics in primary health care settings in China. JAMA Intern. Med. 174, 1914–1920 (2014).
- 46. Schwartz, K. L. et al. Unnecessary antibiotic prescribing in a Canadian primary care setting: a descriptive analysis using routinely collected electronic medical record data. C. Open 8, E360–E369 (2020).

- 47. Milani, R. V. et al. Reducing inappropriate outpatient antibiotic prescribing: Normative comparison using unblinded provider reports. BMJ Open Qual. 8, (2019).
- 48. World Health Organisation. Immunization. (2019). Available at: https://www.who.int/news-room/facts-in-pictures/detail/immunization. (Accessed: 5th January 2021)
- 49. Center for Disease Dyanmics Economics and Policy. ARVac Consortium Center for Disease Dynamics, Economics & Policy (CDDEP). Available at: https://cddep.org/projects/arvacconsortium/. (Accessed: 5th January 2021)
- 50. Nandi, A. & Shet, A. Why vaccines matter: understanding the broader health, economic, and child development benefits of routine vaccination. Hum. Vaccines Immunother. 16, 1900–1904 (2020).
- 51. Rosini, R., Nicchi, S., Pizza, M. & Rappuoli, R. Vaccines Against Antimicrobial Resistance. Frontiers in Immunology 11, (2020).
- 52. Buchy, P. et al. Impact of vaccines on antimicrobial resistance. International Journal of Infectious Diseases 90, 188–196 (2020).
- 53. Chang, A. Y. et al. The equity impact vaccines may have on averting deaths and medical impoverishment in developing countries. Health Aff. 37, 316–324 (2018).
- 54. Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).
- 55. Atkins, K. E. & Flasche, S. Vaccination to reduce antimicrobial resistance. The Lancet Global Health 6, e252 (2018).
- 56. von Gottberg, A. et al. Effects of Vaccination on Invasive Pneumococcal Disease in South Africa. N. Engl. J. Med. 371, 1889–1899 (2014).
- 57. Dyar, O. J., Huttner, B., Schouten, J. & Pulcini, C. What is antimicrobial stewardship? Clinical Microbiology and Infection 23, 793–798 (2017).
- 58. World Health Organization. Antimicrobial Stewardship Programme in health-care facilities in Low- and Middle Income countries A WHO Practical Toolkit. (2019).
- 59. World Health Organization. Executive Summary The Selection and Use of Essential Medicines Selection and Use of Essential Medicines. (2019).
- 60. Pulcini, C. et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin. Microbiol. Infect. 25, 20 (2019).
- 61. Helen, M. et al. Global Core Standards for Hospital Antimicrobial Stewardship Programs -International Perspective and Future Directions. (2018).
- 62. Mbugua, S. M. et al. Exploring perspectives on antimicrobial stewardship: a qualitative study of health managers in Kenya. Glob. Heal. Res. Policy 5, 49 (2020).

- 63. Vaughn, V. M. et al. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized With Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. (2020). doi:10.1093/cid/ciaa1239
- 64. Huttner, B. D., Catho, G., Pano-Pardo, J. R., Pulcini, C. & Schouten, J. COVID-19: don't neglect antimicrobial stewardship principles! (2020). doi:10.1016/j.cmi.2020.04.024
- 65. Lynch, C., Mahida, N. & Gray, J. Antimicrobial stewardship: a COVID casualty? Journal of Hospital Infection 106, 401–403 (2020).
- 66. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. U. S. A. 115, 6506–6511 (2018).
- 67. Princeton University. Antibiotic resistance in food animals nearly tripled since 2000 --ScienceDaily. (2019). Available at: https://www.sciencedaily.com/releases/2019/10/191009132321.htm. (Accessed: 11th January 2021)
- 68. Van Boeckel, T. P. et al. Reducing antimicrobial use in food animals. Sci. Mag. 1350–1352 (2017). doi:10.1126/science.aa01495
- 69. Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M. & Van Boeckel, T. P. Global trends in antimicrobial use in aquaculture. Sci. Rep. 10, 21878 (2020).
- 70. Van Boeckel, T. P. et al. Global trends in antimicrobial resistance in animals in low- And middleincome countries. Science (80-.). 365, (2019).
- 71. World Health Organization. Global Action Plan on Antimicrobial Resistance. (2015).
- 72. Food and Agriculture Organization of the United States, World Organization for Animal Health & World Health Organization. Monitoring and Evaluation of the Global Action Plan on Antimicrobial Resistance: Framework and recommended indicators. (2019).
- 73. U.S. Department of Health and Human Services, Food and Drug Administration & Center of Veterinary Medicine. Guidance for Industry New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #209. (2013).
- 74. Dillon, M. E. The Impact of Restricting Antibiotic Use in Livestock: Using a 'One Health' Approach to Analyze Effects of the Veterinary Feed Directive. (2020).
- 75. Daulaire, N., Bang, A., Tomson, G., Kalyango, J. N. & Cars, O. Universal Access to Effective Antibiotics is Essential for Tackling Antibiotic Resistance. J. Law, Med. Ethics 43, 17–21 (2015).
- 76. Center for Disease Dyanmics Economics and Policy. Access Barriers to Antibiotics. (2019).
- 77. O'Neill, J. Tackling Drug-Resistant Infections Globally Final Report and Recommendations. (2016).
- 78. Lewis, K. Platforms for antibiotic discovery. Nature Reviews Drug Discovery 12, 371–387 (2013).

- 79. Quadri, F. et al. Antibacterial Drug Shortages From 2001 to 2013: Implications for Clinical Practice. Clin. Infect. Dis. 60, 1737–1742 (2015).
- 80. Nurse-Findlay, S. et al. Shortages of benzathine penicillin for prevention of mother-to-child transmission of syphilis: An evaluation from multi-country surveys and stakeholder interviews. PLoS Med. 14, (2017).
- 81. U.S. Food & Drug Administration. FDA Drug Shortages. Available at: https://www.accessdata.fda.gov/scripts/drugshortages/default.cfm. (Accessed: 14th January 2021)
- 82. Pew Charitable Trusts. Tracking the Global Pipeline of Antibiotics in Development. (2020). Available at: https://www.pewtrusts.org/en/research-and-analysis/issue -briefs/2020/04/tracking-the-global-pipeline-of-antibiotics-in-development. (Accessed: 14th January 2021)
- 83. World Health Organization. Antimicrobial Resistance Global Report on Surveillance. (2014).
- 84. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).
- 85. Center for Disease Dyanmics Economics and Policy. The State of the World's Antibiotics 2015. (2015).
- Luepke, K. H. et al. Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications. Pharmacotherapy 37, 71–84 (2017).
- 87. Pew Charitable Trust. Antibiotics Currently in Clinical Development. (2017).

Other reports from CDDEP

- Infectious Diseases in the South-East Asia Region 2021 Arinaminpathy N, Sinha A, Anvikar AR, Joseph AK, Kang G, Frost I, et al. Infectious Diseases in the South-East Asia Region. 2021. (Forthcoming)
- Access Barriers to Antibiotics 2019
 Frost I, Craig J, Joshi J, Faure K, Laxminarayan R. Access Barriers to Antibiotics [Internet]. 2019
 [cited 2021 Feb 5]. Available from: https://cddep.org/wpcontent/uploads/2019/04/AccessBarrierstoAntibiotics_CDDEP_FINAL.pdf
- 3. Checklist for Hospital Antimicrobial Stewardship Programming 2018 Helen M, Pombo R, Gandra S, Thompson D, Lamkang AS, Pulcini C, et al. Global Core Standards for Hospital Antimicrobial Stewardship Programs - International Perspective and Future Directions [Internet]. 2018 [cited 2021 Jan 27]. Available from: https://cddep.org/wpcontent/uploads/2018/12/Global-Core-Standards-for-Hospital-Antimicrobial-Stewardship-Programs.pdf
- Antimicrobial resistance and primary health care 2018 Center for Disease Dynamics Economics and Policy. Antimicrobial Resistance and Primary Care [Internet]. 2018 Nov [cited 2021 Feb 5]. Available from: https://cddep.org/wpcontent/uploads/2018/11/AMR-and-Primary-Health-Care.pdf
- Antibiotic Use and Resistance in Bangladesh 2018 Center for Disease Dynamics Economics and Policy. Antibiotic Use and Resistance in Bangladesh: Situation analysis and recommendations on antibiotic resistance [Internet]. 2018 [cited 2021 Feb 5]. Available from: https://cddep.org/wp-content/uploads/2018/08/ANTIBIOTIC-USE-RESISTANCE-IN-BD_2018.pdf
- Situation Analysis Report on Antimicrobial Resistance in Pakistan -2018 Center for Disease Dynamics Economics and Policy. Situation analysis report on Antimicrobial Resistance in Pakistan: Findings and recommendations on antimicrobial use and resistance [Internet]. 2018 [cited 2021 Feb 5]. Available from: https://cddep.org/wp-content/uploads/2018/03/Situational-Analysis-Report-on-Antimicrobial-Resistance-in-Pakistan.pdf
- 7. Scoping Report on Antimicrobial Resistance in India 2018 Gandra S, Joshi J, Trett A, Sankhil Lamkang A. Scoping report on Antimicrobial Resistance in India [Internet]. Scoping Report on Antimicrobial Resistance in India. 2017 Nov [cited 2021 Feb 5]. Available from: https://cddep.org/wp-content/uploads/2017/11/AMR-INDIA-SCOPING-REPORT.pdf
- 8. Situation Analysis of Antimicrobial Use and Resistance in Humans and in Animals in Zimbabwe- 2017 Center for Disease Dynamics Economics and Policy. Situation Analysis of Antimicrobial Use and Resistance in Humans and in Animals in Zimbabwe [Internet]. 2017 [cited 2021 Feb 5]. Available from: https://cddep.org/wp-content/uploads/2017/10/SITUATION-ANALYSIS-OF-ANTIMICROBIAL-USE-AND-RESISTANCE-IN-HUMANS-AND-ANIMALS-IN-ZIMBABWE-1.pdf
- 9. The State of the World's Antibiotics 2015 Center for Disease Dyanmics Economics and Policy. The State of the World's Antibiotics 2015. (2015). Available from: https://cddep.org/wp-content/uploads/2017/06/swa_edits_9.16.pdf

The Center for Disease Dynamics, Economics & Policy (CDDEP) produces independent, multidisciplinary research to advance the health and wellbeing of human populations around the world. CDDEP projects are global in scope and include scientific studies and policy engagement. The CDDEP team addresses country-specific and regional issues and the local and global aspects of global challenges, such as antibiotic resistance and pandemic influenza. CDDEP research is notable for innovative approaches to design and analysis, shared widely through publications, presentations, and web-based programs. CDDEP has offices in Washington, D.C., and New Delhi and relies on a distinguished team of scientists, public health experts, and economists.

THE CENTER FOR DISEASE DYNAMICS, ECONOMICS & POLICY 5636 Connecticut Ave NW PO Box 42735, Washington DC 20015