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This report is the World Health Organization’s (WHO) third annual review of the clinical antibacterial pipeline 
to analyse how the pipeline responds to the WHO priority pathogens list. This report covers direct-acting 
small molecules and biological agents that are in development worldwide. It assesses to what extent the 
pipeline addresses the WHO priority pathogens, Mycobacterium tuberculosis and Clostridioides difficile 
and to what extent the antibacterial agents are innovative. This report is part of the WHO’s efforts in global 
research and development (R&D) priority setting to contain antimicrobial resistance. 

Key messages: 
•   The clinical pipeline remains insufficient to tackle the challenge of increasing emergence and 

spread of antimicrobial resistance.
•   It is primarily driven by small- or medium-sized enterprises (SMEs), with large pharmaceutical 

companies continuing to exit the field.  
•   Eight new antibacterial agents have been approved since 1 July 2017, but overall, they have 

limited clinical benefits. 
•   One new anti-tuberculosis (anti-TB) agent, pretomanid, developed by a not-for-profit 

organization, has been approved for use within a set drug-combination treatment for MDR TB. 
•   The current clinical pipeline contains 50 antibiotics and combinations (with a new therapeutic 

entity) and 10 biologicals, of which 32 antibiotics are active against the WHO priority 
pathogens:

o   Six of these agents fulfil at least one of the innovation criteria; only two of these are active 
against the critical MDR Gram-negative bacteria. 

•   More than 40% of the pipeline targeting WHO priority pathogens consists of additional β-lactam 
and β-lactamase inhibitor (BLI) combinations, with a major gap in activity against metallo-β-
lactamase (MBL) producers.

•   The anti-TB and C. difficile antibacterial pipeline is more innovative than the WHO priority 
pathogens pipeline, with more than half of the antibiotics fulfilling all of the innovation criteria.  

Market approvals

Since 2017 eight new antibiotics ― including one for the treatment of TB ― have been approved (Table 
1). Two, vaborbactam + meropenem and lefamulin, were classified as meeting at least one of the 
innovation criteria. The other newly approved antibiotics are derivatives of known classes, such as the 
two tetracycline derivatives eravacycline and omadacycline. Half of the new agents target carbapenem-
resistant Enterobacteriaceae (CRE); however, only one is of a new class. New approved antibiotics to treat 
carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are absent. Thus, there is a 
visible mismatch between the few newly approved antibiotics and the WHO priority pathogens list. 

Of the two new β-lactam/BLI combinations that have been approved, vaborbactam is a first-in-class BLI 
that contains a cyclic boronate pharmacophore and relebactam, a diazabicyclooctane (DBO) analogue. Both 
are active against many CRE isolates, but not against CRE where resistance is due to MBLs such as the New 
Delhi metallo-β-lactamase (NDM) enzyme.

Pretomanid, which was approved by the US Food and Drug Administration (FDA) in August 2019 for use 
within a set drug-combination treatment for MDR TB, is the first new TB drug to be developed and registered 
by a not-for-profit organization, the Global Alliance for TB Drug Development (TB Alliance). 

Executive summary



vi i i 2019 ANTIBACTERIAL AGENTS IN CLINICAL DEVELOPMENT: AN ANALYSIS OF THE ANTIBACTERIAL CLINICAL DEVELOPMENT PIPELINE 2019 ANTIBACTERIAL AGENTS IN CLINICAL DEVELOPMENT: AN ANALYSIS OF THE ANTIBACTERIAL CLINICAL DEVELOPMENT PIPELINE

Overall, the newly approved products have limited clinical benefit over existing treatments. The lack of 
differentiation against existing treatments, their non-inclusion in clinical guidelines and their higher prices in 
comparison to existing generic treatments make it difficult to predict their place in the treatment landscape. 
As six of the eight are from existing classes where multiple resistance mechanisms are well established, the 
possibility of fast emergence of resistance to these new agents is foreseen. 

 
Clinical antibacterial pipeline 

As of 1 September 2019, there are 50 antibiotics and combinations (with a new therapeutic entity), and 10 
biologicals in the clinical pipeline (Phase 1– 3) targeting the WHO priority pathogens, TB and C. difficile (Fig. 
1). Of these 50 antibiotics, 32 target the WHO priority pathogens, and 12 of those have activity against at 
least one of the critical Gram-negative pathogens (Table 2). There are 12 antibiotics targeting TB and six for 
the treatment of C. difficile infections. 
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Fig. 1. Antibacterial agents in clinical development (Phase 1–3)

Innovativeness

Of the 32 antibiotics that are being developed and that target the WHO priority pathogens, six fulfil at 
least one of the four criteria that were used to assess the extent to which agents in the pipeline can be 
classified as innovative (see criteria under section 2.3.2). 

Only two of the antibiotics that meet at least one of the innovation criteria are active against the critical 
Gram-negative bacteria. On 17 July 2019, Polyphor terminated development of the intravenous form of 
murepavadin, which was the only potential treatment option against Gram-negative bacteria that fulfilled 
all four of the innovation criteria, due to concerns over nephrotoxicity observed in Phase 3. Seven of the 
12 antibiotics under development for TB meet at least one of the innovation criteria (Table 4). 

The current pipeline is dominated by β-lactam/BLI combinations (n = 13, 41% of products targeting 
WHO priority pathogens). Of the β-lactam/BLI combinations, the majority target extended-spectrum 
β-lactamase (ESBL)-producing Enterobacteriaceae, Klebsiella pneumoniae carbapenemase (KPC) and 
oxacillinase-48 (OXA-48)-producing Enterobacteriaceae. There are only two agents (cefiderocol and 
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durlobactam [ETX-2514] + sulbactam) that are active against MDR A. baumannii and one (cefiderocol) that 
is active against MDR P. aeruginosa.

 
Market dynamics and funding situation

Public and philanthropic investment in developing antibacterial agents has increased in recent years, 
through mechanisms such as the Biomedical Advanced Research and Development Authority (BARDA), 
Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator (CARB-X), the Replenishing and 
Enabling the Pipeline for Anti-Infective Resistance (REPAIR) Impact Fund, and the Global Antibiotic Research 
and Development Partnership (GARDP). Private investment, however, has further decreased, with large 
pharmaceutical companies and private venture capital investors abandoning the area.1 Recognizing the need 
to ensure that effective antibiotics are available to enable and secure modern medicine (e.g. for patients 
undergoing chemotherapy or organ transplantation), governments are testing different models to change 
the value and market dynamics for antibiotics. Current examples include the United States’ revised hospital 
reimbursement system and the United Kingdom and Sweden’s pilots on alternative antibiotic procurement 
and payment models. It is important that all these efforts focus on the most useful and innovative products 
in the clinical and preclinical pipeline. This assessment should help governments in making appropriate 
decisions in this regard. 

 
Future changes in methodology for the 2020 update 

On 1 October 2019 the advisory group agreed to expand the scope of the clinical antibacterial pipeline 
review to non-traditional products as well as to include inhaled products for the 2020 pipeline update. 

All of the data contained in this report can be downloaded from the WHO Global Observatory on Health 
R&D (https://www.who.int/research-observatory/monitoring/processes/antibacterial_products/en/) and 
will feed into the data dashboard being developed by the Global AMR R&D Hub.

In addition to this report, in 2019 WHO developed a set of target product profiles for missing 
antibacterial treatments and has reviewed the preclinical antibacterial drug development pipeline.2 
The preclinical pipeline data is available through the WHO Global Observatory on Health R&D: 
https://www.who.int/research-observatory/monitoring/processes/antibacterial_products_preclinical/en.

https://www.who.int/research-observatory/monitoring/processes/antibacterial_products/en/
https://www.who.int/research-observatory/monitoring/processes/antibacterial_products_preclinical/en
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Antimicrobial resistant infections are a major 
threat to global health, as access to effective 
antibiotics underpins basic and modern medicine. 
Cancer chemotherapy, invasive surgeries, organ 
transplantations and complicated deliveries 
can only be performed without the risk of 
serious infections because of access to effective 
antibacterial treatments.

Mortality and morbidity from resistant infections is 
on the rise globally, and all countries are affected. 
In the United States alone, each year more than 2.8 
million people get an antibiotic-resistant infection, 
resulting in more than 35,000 deaths.3 In Europe, 
antibiotic resistance is responsible for an estimated 
33,000 deaths annually.4 Globally, children and 
neonates are disproportionately affected by 
antibiotic resistant infections, particularly in low- 
and middle-income countries. Pneumonia and 
bloodstream infections causing sepsis are among 
the major causes of childhood mortality under the 
age of 5. Approximately 30% of newborns with 
sepsis die due to bacterial infections resistant to 
first-line antibiotics.5 

Infection prevention and control as well as the 
conservation of existing antibiotics through 
antimicrobial stewardship programmes is key 
to the prevention and control of antimicrobial 
resistance. In addition, to ensure continued 
effective treatment of bacterial resistant infections, 
there is also an urgent need for the development of 
new antibacterial agents.  

In 2017, the Group of 20 (G20) nations committed 
to intensifying global collaboration on antimicrobial 
resistance and to further examine options for 
market incentives for antimicrobial resistance-
related R&D. This led to the establishment of the 
Global AMR R&D Hub. In 2019, the G20 renewed its 
commitments to antibiotic R&D. The Inter-Agency 
Coordination Group on Antimicrobial Resistance 
convened by the Secretary-General of the United 
Nations, in its final report,6 also identified the need 
for increased investment into antibiotic R&D and to 
build upon existing alternative models to develop 
new antibiotics.

This report confirms that although there has been 
an increase in awareness raising and political 
discussion on the need to accelerate R&D of 
new antibiotics, the clinical antibacterial pipeline 
remains insufficient and further investment and 
policy action are needed. 

In the last couple of years, the majority of the 
large research-based pharmaceutical companies 
have exited the field of antibiotic R&D. Despite 
commitments from the private sector through the 
AMR Industry Alliance, concrete action is limited. 
A number of SMEs remain active in R&D and have 
launched new antibiotics in recent years. However, 
it is a sobering reality that many of these SMEs are 
struggling to commercialize their antibiotics in the 
current market-driven environment. 

Product development partnerships such as the 
Drugs for Neglected Diseases initiative (DNDi), 
which produced fexinidazole for the treatment 
of sleeping sickness; the Medicines for Malaria 
Venture, which brought forward multiple malaria 
medicines; and most recently the TB Alliance, 
which developed pretomanid, have proven that 
non-traditional development pathways can very 
effectively lead to innovative treatments targeting 
urgent global public health needs. However, it is 
essential to maintain existing antibiotic R&D and 
create novel market incentives to both retain and 
attract new private investment into antibiotic R&D 
in a sustainable manner. 

A number of actors have also newly joined the field 
supporting antibiotic R&D. GARDP, a joint initiative 
between WHO and DNDi, supports early- to late-
stage R&D and brings the products to market, 
while ensuring access and responsible use. BARDA, 
CARB-X, Innovative Medicines Initiative (IMI), Joint 
Programming Initiative on Antimicrobial Resistance 
(JPIAMR) and the REPAIR Impact Fund are some of 
the current funders for antibiotic R&D. However, 
with the exception of BARDA and GARDP, these 
organizations mainly target early-stage research 
(up until Phase 1). 

1. introduction
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To address the challenging market dynamics of 
antibiotics and their present low value, a few 
pilot efforts are currently ongoing to explore 
new payment models to incentivize antibiotic 
development. One example is the United Kingdom 
National Health Service’s subscription-style model, 
that utilizes payment for access to antibiotics 
as opposed to paying for volume. Initiatives 
are also being set up to try to revive existing old 
antibiotics and prevent shortages and stock-outs. 
A consortium of foundations and hospitals in the 
United States, for instance, has formed a not-
for-profit company, Civica Rx, to manufacture or 
subcontract manufacturing of generic medicines 
that are affected by shortages, including generic 
intravenous antibiotics.7 

This report confirms that despite increased 
awareness raising and political discussion on the 
need to accelerate R&D of new antibiotics, the 
clinical antibacterial pipeline remains insufficient. 
Additional initiatives and investments are needed 
to drive antibiotic R&D and innovation and to build 
a robust pipeline.

This report is the WHO’s third annual review 
of the clinical antibacterial pipeline to analyse 
how the pipeline has responded to the WHO 
priority pathogens list. In addition, in 2019 
for the first time WHO reviewed the preclinical 
antibacterial drug development pipeline and 
published a database:  https://www.who.int/
research-observatory/monitoring/processes/
antibacterial_products_preclinical/en

https://www.who.int/research-observatory/monitoring/processes/antibacterial_products_preclinical/en
https://www.who.int/research-observatory/monitoring/processes/antibacterial_products_preclinical/en
https://www.who.int/research-observatory/monitoring/processes/antibacterial_products_preclinical/en
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Evaluation of the antibacterial clinical development 
pipeline was conducted through consensus 
agreement by an advisory group comprising 
clinicians, microbiologists and experts in antibiotic 
R&D, pharmacokinetics/pharmacodynamics (PK/
PD) and antimicrobial resistance (see 
Acknowledgements). The experts reviewed the 
quality criteria and assessed each agent against 
those criteria during a two-day advisory group 
meeting (30 September–1 October 2019). The 
group was assisted by members of the WHO 
Secretariat. Members of the advisory group who 
had conflicts of interest (Annex 1) with respect to a 
particular agent were excluded from the discussion 
of that agent. The draft evaluation of all antibiotics 
and this report were circulated to all members of 
the advisory group for feedback before publication.
 
 
2.1 Scope and inclusion/exclusion criteria

This review is limited to new therapeutic entities8 
that are in Phase 1–3 clinical trials and do not have 
market authorization for human use anywhere 
in the world. It is restricted to agents that could 
potentially be used to treat bacterial infections 
caused by the WHO priority pathogens9 (Box 1), TB 
or C. difficile and that have a specific antibacterial 
effect. The analysis does not include:

•   preventive interventions, such as vaccines or 
topical decolonizing agents;

•   immunomodulating or microbiome modulating 
agents;

•   nonspecific inorganic substances;
•   biodefence agents;
•   agents not developed for systemic use 

(injectable or oral formulations) but only for 
topical application (e.g. creams or eye drops); 

•   new formulations of existing treatments; or
•   analysis of clinical effectiveness.  

Fixed-dose combinations of potentiators (molecules 
that enhance the effectiveness of antibiotics but 
are not antibacterial themselves) and antibacterial 
agents are included if they contain a new chemical 
entity. 

The analysis only includes agents that are in active 
development. Agents for which no progress or 
activity in clinical development has been recorded for 
5 years or more are listed in a separate table. Agents 
that no longer appear in a company’s development 
pipeline were excluded. One of the main sources of 
data is clinical trial registries, but not all trials are 
registered. Thus, all companies and institutions are 
encouraged to register clinical trials in line with the 
WHO International Standards for Clinical Trial 
Registries10 and through the International Clinical 
Trials Registry Platform (ICTRP). 
 
2.2 Search strategy

This 2019 clinical pipeline update is based on the 
2017 publication of Antibacterial Agents in Clinical 
Development and the subsequent update in 2018.11 
Information on agents in development was sought 
from a variety of sources. The cut-off point was 
1 September 2019, and no agents were added or 
removed after that date. All agents that met the 
inclusion criteria were included. Publications were 
cross-checked by compound name and synonyms 
(research numbers and brand names) to remove 
duplicates. Some data sources reported different 
phases of development in different countries or the 
use for different indications. For these agents, the 
most advanced development phase was listed in 
this clinical pipeline update with a footnote. 

The data for analysis was collected through desktop 
research as well as from relevant stakeholders, 
including different associations of pharmaceutical 
companies active in the area, global and regional 
public and private funders, and foundations (see 
Acknowledgements).

Sources were consulted as follows:

•   Journal articles (review articles published since 
1 July 2018 through 1 September 2019; search 
terms: antibacterial pipeline OR antibiotic 
pipeline) on the clinical antibacterial pipeline 
were retrieved from PubMed and conference 
abstracts and posters. For Phase 1 agents where 

2. Methods 
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limited data was available, information from 
company websites was used and evaluated by 
the advisory group for credibility for inclusion. 

•   The lists of antibiotics in clinical development 
of the Pew Charitable Trusts and the Access to 
Medicines Foundation’s Antimicrobial Resistance 
Benchmark were consulted. 

•   The ICTRP and ClinicalTrials.gov were searched.

•   In collaboration with the European Medicines 
Agency (EMA), the commercial database 
AdisInsight was searched.

•   The 2018 pipeline data was sent to various 
stakeholders, including alliances for 
pharmaceutical companies and SMEs as well as 
global public and private R&D funding bodies (see 
Acknowledgements) for submission of updates 
with supporting documentation. 

•   A targeted desktop search of products was 
carried out with national experts from China, 
Japan and the Russian Federation. 

•   Agents developed for use against TB were 
identified from published reviews of the TB 
pipeline, notably of the TB Alliance.

The search strategy is described in more detail in 
the 2017 WHO report.11

 
 
2.3 Assessment of activity against priority 
pathogens and innovation

Evidence for activity against WHO priority 
pathogens and innovation was retrieved from 
peer-reviewed publications. For agents in the 
early stages of development, information from 
presentations and posters at scientific conferences 
and information published by the developers was 
also used. Information was considered only if it 
was publicly available and after an internal quality 
review to ensure it was scientifically sound. 

2.3.1 Expected activity against priority pathogens
Both in vitro and in vivo (when available) data 
was reviewed for activity against WHO priority 
pathogens. In assessing activity, the advisory group 
made judgements about whether the agent was 
potentially clinically active against the selected 
bacteria based on published minimum inhibitory 

concentrations (MICs) and their pharmacokinetics. 
When available, data on PK/PD and information 
on non-clinical or clinical efficacy was considered 
in the assessment. Drugs that have shown activity 
in vitro but are currently not being developed for 
relevant indications were not assessed against the 
respective pathogens.

The advisory group classified agents for which 
there was inconclusive data as “possibly active”, 
represented by a question mark. For agents for 
which there was little or no data on their activity 
against specific pathogens, the advisory group 
classified the agents as “possibly active”, if drugs of 
the same class are known to be active against the 
respective pathogen.12

2.3.2 Innovation
An agent was considered innovative if there was 
an absence of known cross-resistance to existing 
antibiotics. In this context, cross-resistance is 
defined as within-class cross-resistance that can 
be measured by systematic susceptibility testing 
in vitro of a diverse panel of genetically defined 
pathogens, combined with genetic characterization 
of mutants and molecular structural analysis. An 
increase in the MIC of a new derivative in strains 
that are resistant to a representative of the same 
antibacterial class compared to the wild type 
constitutes cross-resistance even if the MIC 
increase stays below the clinical breakpoint. 

Surrogate predictors for the absence of cross-
resistance which were also assessed include the 
following:13

•  new class (new scaffold or pharmacophore); 
•  new target (new binding site); 
•  new mode of action. 

These were used where sufficient information 
on cross-resistance was not available. All four 
innovation criteria were separately assessed for 
each agent. 

If products do not meet the innovation criteria 
it does not necessarily mean they do not have 
clinical utility for specific patients. For example, a 
better safety profile than the standard of care, a 
less invasive route, or better clinical outcomes or 
increased activity against priority pathogens could 
provide improvements but need to be proven in 
clinical trials. These aspects were not reviewed for 
this report. 
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Since WHO’s first analysis of the clinical antibacterial 
pipeline in 2017, eight new antibiotics, including 
one for the treatment of TB, have been approved. 
Most of these are derivatives of known classes, 
such as the tetracycline derivatives eravacycline 
and omadacycline, as well as the majority targeting 
CRE (n = 4) and other priority pathogens on the 
WHO priority pathogens list (“high” and “medium” 
priority) (OPPs) (n = 4). 

Both omadacycline and eravacycline are semi-
synthetic and fully synthetic tetracycline derivatives, 
respectively. Omadacycline (intravenous and oral) has 
both Gram-positive activity ― including methicillin-
resistant Staphylococcus aureus (MRSA) ― and 
limited Gram-negative activity. It is approved for 
both skin infections and community-acquired 
pneumonia (CAP). The need for new agents for skin 
infections is limited, and the Gram-negative activity 
of omadacycline has not been studied in the clinic. 
Nonetheless, having an oral single agent option 
for CAP may prove useful for selected patients.14 
Eravacycline (intravenous only) is approved for 
complicated intra-abdominal infections (cIAIs); 
it failed in trials of complicated urinary tract 
infections (cUTIs).15 Further work is needed to 
assess the clinical use and value of omadacycline 
and eravacycline.   

Of the two newly approved β-lactam/BLI 
combinations, vaborbactam is the first representative 
of a new chemical class, a BLI that contains a cyclic 
boronate pharmacophore and that, in combination 
with meropenem, is active against KPC-producing 
Enterobacteriaceae. The other is relebactam, a 
DBO analogue that, in combination with imipenem/
cilastatin, is active against Class A (including KPC) 
and Class C β-lactams. Both of these agents are 
intravenous only, and neither is active against MBLs 
nor any relevant OXA enzymes. Another visible 
gap in the newly approved antibiotics is agents 
for treating carbapenem-resistant A. baumannii 
(CRAB) and P. aeruginosa (CRPA) isolates.

Pretomanid, a nitroimidazo-oxazine which was 
developed by the not-for-profit organization TB 
Alliance, was approved by the US FDA. It is part 
of a three-drug combination (with bedaquiline and 

linezolid), 6–9-month, all-oral regimen for the 
treatment of adult patients with extremely drug 
resistant (XDR) TB and treatment-intolerant or 
non-responsive MDR pulmonary TB. Pretomanid 
was approved under the Limited Population 
Pathway for Antibacterial and Antifungal Drugs.16

The recently approved antibiotics have mainly 
been approved for the treatment of cUTI and/or 
cIAI. Two new antibiotics target CAP, one of which 
is a member of the pleuromutilin class (lefamulin), 
which has been used topically in humans and is 
an established class for systemic use in veterinary 
medicine. Two of the newly approved antibiotics 
were incorporated into the WHO Model List of 
Essential Medicines in 2019: vaborbactam + 
meropenem and plazomicin.17 Unfortunately, 
Achaogen, the company which developed 
plazomicin, has filed for bankruptcy, highlighting 
the difficult market dynamics that antibiotic 
developers are currently facing. 

In 2019, to ensure access to patients who need 
them while restricting irresponsible excessive 
use, WHO classified all new antibiotics under the 
AWaRe (Access, Watch, Reserve) index:

•   delafloxacin (Watch);
•   vaborbactam + meropenem (Reserve);
•   plazomicin (Reserve);
•   eravacycline (Reserve); and 
•   omadacycline (Reserve).

Further evidence and studies are needed regarding 
the added clinical value and effectiveness of 
these agents. So far, no post-approval usage 
data has been made available to evaluate the 
indications and adequacy of their usage in different 
populations and countries, nor does it seem likely 
that such data will be available in the near future.  
Based on anecdotal evidence and current sales 
figures, clinicians appear reluctant to use the new 
antibiotic agents to treat the infectious syndromes 
(cUTI, cIAI) that were the initial target of regulatory 
authority approval.

3. Agents that obtained market 
authorization
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The following sections describe the current 
antibacterial clinical development pipeline with 
activity against the WHO priority pathogens, TB 
and C. difficile with a specific section on biological 
agents in development.   
 
4.1 Antibiotics being developed against 
WHO priority pathogens 

There are currently 32 antibacterial agents in clinical 
development Phases 1–3 targeting WHO priority 
pathogens, of which 12 have activity against at 
least one of the critical Gram-negative pathogens. 
Murepavadin was in Phase 3 trials and had fulfilled 
all four of the innovation criteria in the 2018 
update, including the main criteria for absence of 
known cross-resistance. But the agent was removed 
as of 17 July 2019 after Polyphor terminated its 
development for systemic infections due to concerns 
about nephrotoxicity.18 Murepavadin remains in 
development for inhalation therapy.

The majority of products in the clinical pipeline 
are derivatives of existing classes. Of the 32 
agents, six fulfil at least one of the four innovation 

criteria. Half of these are in Phase 3 clinical trials 
(taniborbactam, zoliflodacin, gepotidacin); a novel 
FabI inhibitor (afabicin) is in Phase 2, and a boronate 
BLI (VNRX-7145) and an FtsZ inhibitor (TXA-709) 
are in Phase 1.

Since the 2018 update, several new products have 
entered Phase 1 (e.g. SPR-206), which benefited 
from support from CARB-X, JPIAMR, BARDA 
and the REPAIR Impact Fund. The two novel 
oral topoisomerase inhibitors (zoliflodacin and 
gepotidacin) have successfully moved from Phase 2 
to Phase 3 trials. Lefamulin (a novel pleuromutulin) 
and relebactam + imipenem/cilastatin (a DBO BLI) 
moved from Phase 3 to FDA approval; and two 
antibiotics (omadacycline and eravacycline) moved 
from New Drug Application (NDA) submission to 
gaining FDA approval. One additional product, 
cefiderocol, a β-lactam which is intrinsically more 
stable to a variety of β lactamases and has activity 
against all three critical priority pathogens, received 
FDA approval for cUTI after the cut-off date of this 
report and is thus still included in Table 2.   

4. Agents in clinical development
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Table 2. Antibiotics that are being developed against WHO priority pathogens

Name
(synonym)

Phase Antibiotic class Route of 
administration 
(developer)

Expected activity against 
priority pathogens

Innovation

CRAB CRPA CRE OPP NCR CC T MoA

Lascufloxacin NDA1 Fluoroquinolone iv & oral (Kyorin)    ? – – – –

Cefiderocol12 NDA2

MAA2
Siderophore cephalosporin iv (Shionogi)

   / ? – – –

Sulopenem,
Sulopenem etzadroxil/
probenecid

3 Penem iv (Iterum)
oral (Iterum)    3 / – – – –

Durlobactam (ETX-2514) + 
sulbactam 

3 DBO-BLI/PBP2 binder + 
β-lactam-BLI/PBP1,3 binder

iv (Entasis)
   / – – – –

Taniborbactam (VNRX-5133) + 
cefepime

3 Boronate-BLI + cephalosporin iv (VenatoRx)
 ?  / ?  – –

Enmetazobactam (AAI-101) + 
cefepime 

3 β-lactam BLI + cephalosporin iv (Allecra)
   4 / – – – –

Zoliflodacin 3 Topoisomerase inhibitor 
(spiropyrimidenetrione)

oral (Entasis/GARDP) / / /    – 

Gepotidacin 3 Topoisomerase inhibitor  
(triazaacenaphthylene)

iv & oral (GSK) / / /  ?  – 

Levonadifloxacin
Alalevonadifloxacin

35 Fluoroquinolone iv
oral (Wockhardt)    ? - – – –

Cefilavancin
(TD-1792)

36 Glycopeptide-cephalosporin 
conjugate

iv (Theravance/R Pharm) / / /  – – – –

Solithromycin 37 Macrolide iv & oral (Melinta/Fujifilm 
Toyama Chemical) / / /  – – – –

Contezolid 
Contezolid acefosamil

2/38 Oxazolidinone oral (MicuRx)
iv & oral (MicuRx) / / /  – – – –

Afabicin 
(Debio-1450)

2 FabI inhibitor iv & oral (Debiopharm) / / /     

BOS-228 (LYS-228) 2 Monobactam iv (Boston 
Pharmaceuticals)    / – – – –

Nafithromycin 
(WCK-4873)

2 Macrolide oral (Wockhardt) / / /  – – – –

TNP-2092 2 Rifamycin-quinolizinone hybrid iv & oral (TenNor) / / / ? – – – –

Benapenem 29 Carbapenem iv  (Sichuan 
Pharmaceutical)    / – – – –

Zidebactam + cefepime 1 DBO-BLI/PBP2 binder + 
cephalosporin 

iv (Wockhardt)
 ?  / – – – –

Nacubactam + meropenem 1 DBO-BLI/PBP2 binder + 
meropenem

iv (NacuGen 
Therapeutics)    10 / – – – –

ETX0282 + cefpodoxime 1 DBO-BLI/PBP2 binder + 
cephalosporin 

oral (Entasis)
   10 / – – – –

VNRX-7145 + ceftibuten 1 Boronate-BLI + cephalosporin oral (VenatoRx)    / ?  – –

SPR-741 + β-lactam 1 Polymyxin (potentiator) + 
β-lactam

iv (Spero) ? ? ? / – – – –

SPR-206 1 Polymyxin iv (Spero)    / – – – –
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Name
(synonym)

Phase Antibiotic class Route of 
administration 
(developer)

Expected activity against 
priority pathogens

Innovation

CRAB CRPA CRE OPP NCR CC T MoA

KBP-7072 1 Tetracycline oral (KBP BioSciences)     – – – –

TP-271 1 Tetracycline iv & oral (Tetraphase) ?    – – – –

TP-6076 1 Tetracycline iv (Tetraphase)   ? / – – – –

EBL-10031 (apramycin) 110 Aminoglycoside iv (Juvabis) ? – ? / – – – –

AIC-499 + 
unknown BLI

1 β-lactam + BLI iv (AiCuris) ? ? ? / – – – –

TNP-2198 1 Rifamycin-nitroimidazole 
conjugate

oral (TenNor) / / /  – – – –

TXA-709 1 FtsZ inhibitor oral & iv (Taxis)        

BCM-0184 1 ? oral (Biocidium)     ? ? ? ?

ARX-1796 (oral avibactam 
prodrug)

1 DBO-BLI + β-lactam oral (Arixa 
Pharmaceuticals)    11 / – – – –

Pathogen activity:  active; ? possibly active;  not or insufficiently active; / activity not assessed, as the antibiotic is focused and developed for only either Gram-
positive cocci or Gram-negative rods. The only agents assessed against OPPs were those that are not active against critical priority pathogens. OPP includes the high- 
and medium-priority pathogens.

Innovation assessment:  criterion fulfilled; ? inconclusive data or no agreement among the advisory group; – criterion not fulfilled. 

1 Clinical development only for Japan; registered on 20 September 2019 for CAP in Japan (oral).
2 NDA submitted in December 2018 and MAA submitted in April 2019.
3 Active against ESBL-producing cephalosporin-resistant but not carbapenem-resistant Enterobacteriaceae.
4 Active against ESBL-producing cephalosporin-resistant and some KPC-producing CRE.
5 Clinical development only for India.
6 Clinical development only for Russia.
7 Clinical development only for Japan.
8 Contezolid acefosamil: Phase 2 in the United States. Contezolid: Phase 3 in China; NDA in China expected in 2020.
9 Clinical development only for China.
10 Previously used in animals.
11 Active against KPC but not MBL-producing Enterobacteriaceae.
12 FDA approval on 14 November 2019 for cUTI, which was after the cut-off date of this report.

... contiuned Table 2. Antibiotics that are being developed against WHO priority pathogens
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4.1.1 β-Lactams
β-Lactams are a well-established group of antibiotics 
that interrupt bacterial cell-wall formation through 
covalent linking to penicillin-binding proteins 
(PBPs) and subsequently disrupt peptidoglycan 
biosynthesis. The group includes penicillins, 
cephalosporins, carbapenems and monobactams. 

The emergence of bacteria that produce enzymes 
(β-lactamases) that hydrolyse β-lactam antibiotics 
has rendered many of these agents ineffective.19 

In addition, the spread of ESBLs that confer 
resistance to broad-spectrum cephalosporins 
and of carbapenemases that confer resistance to 
carbapenems is also a concern. 

There are four structural classes20 of β-lactamases, 
known as A, B, C and D. Only Class B enzymes are 
MBLs. These enzymes contain a zinc ion in their active 
site that activates a water molecule, which serves 
as the nucleophile in hydrolysing β-lactams. The 
remaining classes (A/C/D) use a serine nucleophile 
to hydrolyse β-lactams, and thus are termed serine-

β-lactamases. ESBLs belong mostly to Class A. 
Enzymes with carbapenemase  activity are found 
among Class A (KPC, IMI and SME), Class B MBLs 
(IMP, NDM, VIM) and notably Class D (OXA).21 

The main strategy for circumventing hydrolysis 
of β lactams is to combine a β-lactam antibiotic 
with a BLI to restore the effectiveness of the 
β-lactam antibiotic. Traditional BLIs (clavulanic acid, 
tazobactam and sulbactam) inhibit ESBLs, but do 
not inhibit carbapenemases of the same class. 

Over the past years, some new BLI combinations 
with carbapenems or cephalosporins have entered 
the market (e.g. ceftolozane + tazobactam and 
ceftazidime + avibactam),22 but they do not cover all 
classes, namely Class B MBLs (e.g. NDM-1) and Class 
D enzymes produced by Acinetobacter. The spread 
of NDM-1-producing CRE has caused outbreaks with 
high mortality in different countries, most recently 
in Tuscany, Italy, where 31 out of 75 patients died 
of sepsis.23 The last-line treatment options in such 
invasive infections are usually colistin and tigecycline.  

Table 3. Expected activity of β-lactams and β-lactam/BLI combinations against common β-lactamases 

CRE

A A D B

CRAB CRPA
ESBL

(CTX-M)
KPC

(KPC-2,-3)
OXA 

(OXA-48)
MBL

(NDM)

Vaborbactam + meropenem    – – –

Relebactam + imipenem/cilastatin    – – ?

Cefiderocol      

Sulopenem  – – – – –

Durlobactam (ETX-2514) + sulbactam – – – –  –

Taniborbactam (VNRX-5133) + cefepime     – ?

Enmetazobactam (AAI-101) + cefepime  ? – – – –

BOS-288     – –

Zidebactam + cefepime    ? – ?

Nacubactam + meropenem    ? – –

ETX-0282 + cefpodoxime    – – –

VNRX-7145 + ceftibuten    – – –

ARX-1796 (oral avibactam prodrug)    – – –

Pathogen activity:  active; ? possibly active; – not or insufficiently active or activity not assessed.

Grey shading: Agents with market approval on the cut-off date of this report.
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In the clinical pipeline, most of the BLIs (e.g. VNRX-
7145) inhibit Class A, C and some D enzymes, but 
very few inhibit Class B enzymes. Table 3 shows the 
activity of different β-lactams and β-lactam/BLI 
combinations recently approved (since 2017) and 
currently in development against the most clinically 
relevant β-lactamases, especially carbapenemases. 
The table shows that the majority do not inhibit all 
clinically relevant β-lactamases. One notable gap 
is agents with the ability to inhibit all β-lactamase 
producers, including Class B producers (MBLs).

Cefiderocol, a siderophore cephalosporin that was 
recently approved by the FDA, is intrinsically more 
stable against β-lactamases, including ESBL and 
AmpC. It also has greater uptake into the periplasmic 
space due to its siderophore-like property. Cefiderocol 
is currently the agent with the broadest Gram-
negative spectrum, but it still exhibits considerable 
cross-resistance to existing classes. 

Resistance mechanisms other than β-lactamase 
production are not influenced by BLIs. This is 
important for the treatment of P. aeruginosa and 
to a certain extent A. baumannii, as they have 
developed resistance mechanisms beyond the 
production of β-lactamases, including decreased 
permeability of the outer membrane, upregulated 
efflux pumps and modified PBPs. Consequently, 
many new BLI combinations are most successful in 
treating CRE and have little to no benefit in treating 
P. aeruginosa and A. baumannii.

The DBO class of BLIs in the pipeline ― such 
as ETX-2514, nacubactam and zidebactam, 
which are non-β-lactam BLIs ― have intrinsic 
antibacterial activity based on binding to PBP2 and 
may result in synergistic antibacterial activity in 
Enterobacteriaceae.24 

Despite inhibition of β-lactamases, other 
resistance mechanisms may still confer resistance 
to β-lactam/BLI combinations.25–27
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Legend: Expected activity against priority pathogens:

CRAB CRPA CRE OPP
 ?  /

 
Pathogen activity:  active; ? possibly active;  not or 
insufficiently active; / activity not assessed

Cefiderocol, iv NDA, MAA
           /

•   A cephalosporin, linked to a siderophore, 
that makes use of the bacterial iron 
transport mechanism to facilitate uptake 
of the agent through the outer membrane 
of Gram-negative bacteria.28 Stable against 
most β-lactamases, including some MBLs, 
but has partly elevated MICs in CRPA and 
KPC overproducers.29

•   Susceptibility rates are comparable to those 
of colistin and tigecycline;30 PK/PD are 
similar to those of other cephalosporins.

•   FDA approved on 14 November 2019 
in the United States for cUTI, including 
pyelonephritis. Submitted to the EMA in  
April 2019.

•   Phase 3 trials for cUTI vs imipenem/
cilastatin, NCT02321800), hospital-
acquired (HAP) and ventilator-associated 
pneumonia (VAP) vs meropenem 
(NCT03032380) and critical Gram-negative 
pathogens vs best-available therapy 
(NCT02714595).

Sulopenem, iv/oral Phase 3
           /

•   Synthetic penem; oral prodrug sulopenem 
etzadroxil.

•   Activity against Enterobacteriaceae, 
including ESBL producers; Gram-positive 
activity similar to that of carbapenems; 
complete cross-resistance with existing 
carbapenems.31

•   Active against ESBL-producing 
cephalosporin-resistant but not 
carbapenem-resistant Enterobacteriaceae.

•   Phase 3 trial in uncomplicated and 
complicated UTI (NCT03354598, 
NCT03357614).

Durlobactam + sulbactam, iv Phase 3
        /

•   Durlobactam (ETX-2514) is a DBO-type 
BLI with inhibitory activity of PBP2 and 
thus has intrinsic activity against some 
Enterobacteriaceae spp. It restores the 
activity of sulbactam (penicillanic acid 
sulfone) in A. baumannii; the combination 
is currently being developed for A. 
baumannii infections.32

•   Phase 3 trial (NCT03445195).

Taniborbactam + cefepime, iv Phase 3
   ?     /

•   Taniborbactam (VNRX-5133) is a boronate-
based BLI with activity against Class A, 
C and D β-lactamases and several MBLs, 
especially NDM and VIM.

•   Phase 3 trial (NCT03840148).

Enmetazobactam + cefepime, iv Phase 3
        /

•   Enmetazobactam (AAI-101) is a 
tazobactam derivative (β-lactam scaffold) 
studied in combination with cefepime. 

•   Similar inhibitory activity to tazobactam but 
optimized dosing regimen. Cefepime is easier 
to potentiate than piperacillin. Some activity 
against some KPC strains; some added 
benefit over cefepime alone in bacteria-
producing Class A β-lactamases and ESBLs.33 

•   Phase 3 trial (EudraCT 2017-004868-35). 

BOS-288, iv Phase 2
        /

•   BOS-288 (formerly LYS-228) is a 
monobactam with increased stability to 
serine-β-lactamases.34

•   Phase 2 trials (NCT03377426, 
NCT03354754) were terminated as part 
of the out-licensure of the agent to Boston 
Pharmaceuticals.
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Benapenem, iv Phase 2
        /

•   A carbapenem currently in Phase 2 
trials (NCT03578588, CTR20190760, 
CTR20181302).

•   Clinical development only for China.  
•   Complete cross-resistance to other 

carbapenems.

Zidebactam + cefepime, iv Phase 1
   ?     /

•   Zidebactam is a DBO-type BLI with 
relevant antibacterial activity against some 
Enterobacteriaceae spp. due to PBP2 
inhibition.35 

•   Synergistic activity in Enterobacteriaceae with 
Class A β-lactamases, including ESBL and 
KPC, but elevated MICs in MBL producers.36,37 
Reduced susceptibility in Pseudomonas due 
to IMP or VIM Class B carbapenemases, or 
combinations of mechanisms (MexAB-OprM 
or MexXY efflux, diminished OprD function 
and high-level AmpC production).38

•   Phase 1 trials ongoing (NCT02532140, 
NCT02942810, NCT02707107)

Nacubactam + meropenem, iv Phase 1
        /

•   Nacubactam is a BLI of the DBO type with 
some intrinsic antibacterial activity due to 
PBP2 inhibition.

•   Inhibits Class A and C β-lactamases.39,40

•   Combination partner is meropenem; 
synergistic activity with various partners in 
Enterobacteriaceae, including some MBL 
producers (elevated MICs);41 BLI activity 
only in P. aeruginosa and not carbapenem-
resistant P. aeruginosa, and no added benefit 
to carbapenem-resistant A. baumannii.42

•   Phase 1 PK trial with meropenem 
(NCT03174795).

ETX0282 + cefpodoxime, oral Phase 1
        /

•   ETX0282 is an oral BLI of the DBO type 
with some intrinsic antibacterial activity 
against Enterobacteriaceae spp. due to 
PBP2 inhibition.

•   Active against ESBL, OXA-48 and KPC, but 
not MBL-producing Enterobacteriaceae.

•   A Phase 1 trial is ongoing (NCT03491748).

VNRX-7145 + ceftibuten, oral Phase 1
        /

•   Oral boronate-based BLI with activity 
against Class A, C and D (OXA-48) 
β-lactamases; restores the susceptibility 
of ceftibuten in almost 90% of non-
susceptible Enterobacteriaceae. 

•   Not active against MBL producers.
•   Phase 1 trial announced but not registered.

AIC-499 + unknown BLI, iv Phase 1
?   ?   ?  /

•   Limited data available: information on 
structure, activity or the partner BLI has 
not been published.

•   A Phase 1 trial started in January 2017 but 
has not been registered.

ARX-1796, oral Phase 1
        /

•   Oral form of avibactam
•   Combination partner is not known; active 

against KPC and OXA-48 but not MBL 
producers.

•   Phase 1 clinical trial registered 
(NCT03931876); not yet recruiting. 
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4.1.2 Tetracyclines
Tetracyclines43 are broad-spectrum, essentially 
bacteriostatic antibiotics that were discovered 
in 1948 with activity against Gram-positive and 
Gram-negative bacteria. Tetracyclines bind to the 
A site of the 30S ribosomal subunit and inhibit 
binding of aminoacyl-tRNA, preventing synthesis 
of polypeptides. Following the discovery of 
tetracycline, chemical modifications enabled the 
development of numerous semi-synthetic and, 
later, fully synthetic tetracyclines with improved 
activity against emerging MDR bacteria.44 Since 
their introduction, more than 1000 tetracycline 
resistance genes have been reported and are 
often associated with mobile genetic elements, 
including efflux pumps, ribosomal protection 
proteins, tetracycline-inactivating enzymes (tet) 
and mosaic genes. The semi-synthetic parenteral 
glycycline, tigecycline, was approved in 2005 
and overcomes certain class-specific resistance 
mechanisms. In 2018, the FDA approved both 
intravenous and oral formulations of eravacycline, 
a fully synthetic fluorocycline, and omadacycline, 
a semi-synthetic aminomethylcycline derivative 
of minocycline. Currently, three tetracycline 
derivatives, two synthetic and one semi-
synthetic, are in Phase 1 trials. 
  

KBP-7072, oral Phase 1
         

•   An omadacycline derivative, optimized for 
Gram-positive respiratory pathogens.

•   Limited information available.45 

•   Two Phase 1 trials are completed 
(NCT02454361, NCT02654626).

TP-271, iv/oral Phase 1
?         

•   Synthetic tetracycline vulnerable to tet(A) and 
tet(X).

•   Activity similar to that of tigecycline against 
Haemophilus influenzae and Gram-positive 
pathogens, including vancomycin-resistant 
Enterococcus faecium.46 

•   Phase 1 trials ongoing (NCT03024034, 
NCT02724085).

TP-6076, iv Phase 1
      ?   /  

•   Synthetic tetracycline optimized for Gram-
negative pathogens; little influence on tet 
(M, Q, K, A, B and D); elevated MICs in A. 
baumannii overexpressing adeAB.47

•   MICs lower than those of tigecycline in 
Enterobacteriaceae and A. baumannii; 
higher MICs in cases of carbapenem 
resistance, especially in tigecycline co-
resistant strains.48

•   Phase 1 trial ongoing (NCT03691584).

 

4.1.3 Aminoglycosides
Aminoglycosides are bactericidal and active against 
Gram-negative bacteria such as Pseudomonas, 
Acinetobacter and Enterobacter spp. They are 
administered via the intravenous or intramuscular 
route. Commonly used aminoglycosides, such as 
gentamicin, netilmicin, tobramycin and amikacin, 
show different resistance rates globally. The most 
common resistance mechanism is the production 
of aminoglycoside-modifying enzymes. A newer 
resistance mechanism is the production of 
bacterial ribosome-modifying enzymes (16S rRNA 
methylases), which often occur in NDM-producing 
Enterobacteriaceae.49 The recently approved 
aminoglycoside plazomicin has been optimized to 
address most aminoglycoside-modifying enzymes. 

EBL-10031, iv Phase 1
?   –   ?   /  

•   EBL-10031 (apramycin) was licensed in 1980 
for oral therapy in animals.

•   First warning of resistance in 1986,50 
resistance described by AAC(3)-IV, 
acetylation of the 1-amino group.51

•   Phase 1 trial is registered (NCT04105205).

4.1.4 Topoisomerase inhibitors
Topoisomerase inhibitors include quinolones, which 
are synthetic antibiotics discovered in the 1960s. The 
drugs in use today are fluoroquinolones. They target 
two essential type II topoisomerases: DNA gyrase 
and topoisomerase IV. They bind preferentially to 
the gyrase subunit GyrA and to the topoisomerase 
IV subunit ParC.52 New agents in clinical 
development, such as lascufloxacin, are optimized 
for Gram-positive bacteria and pathogens that 
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cause respiratory tract infections (Streptococcus 
pneumoniae, H. influenzae, Moraxella spp., 
Chlamydia pneumoniae, Mycoplasma pneumoniae, 
Legionella pneumoniae). There is usually cross-
resistance among fluoroquinolones. Two new 
bacterial topoisomerase II inhibitors (zoliflodacin 
and gepotidacin), which are in development, have 
new chemical structures with distinct but potentially 
overlapping binding sites with fluoroquinolones.53,54 
These new agents target Gram-positive pathogens, 
respiratory tract infection pathogens and Neisseria 
gonorrhoeae. One agent being developed against 
C. difficile infections is described in section 4.3.

Lascufloxacin, iv/oral NDA
         ?  

•   Fluoroquinolone optimized for Gram-positive 
and respiratory tract infection spectrum.55 

•   Spectrum and activity similar to those of 
levofloxacin, except very low MICs against 
wild-type S. aureus and elevated MICs 
against MRSA due to cross-resistance. 
Depending on breakpoints, probably limited 
efficacy against MRSA; complete cross-
resistance in Gram-negative bacteria.

•   Developed in Japan; registered in September 
2019 for CAP in Japan.

Zoliflodacin, oral Phase 3
/   /   /    

•   Novel bacterial topoisomerase II inhibitor 
(spiropyrimidenetrione scaffold) with 
activity against N. gonorrhoeae and Gram-
positive cocci; clinical development for 
uncomplicated gonorrhoea. 

•   No cross-resistance has been described.56,57 
•   Phase 3 trials for treatment of 

uncomplicated gonorrhoea ongoing 
(NCT03959527).

Gepotidacin, iv/oral Phase 3
/   /   /     

•   Novel bacterial topoisomerase II inhibitor 
(triazaacenaphthylene scaffold); active against 
Gram-positive and Gram-negative cocci.

•   Some cross-resistance described in gonococci.58

•   Phase 3 trial registered for treatment of 
uncomplicated UTI (NCT04020341) and 
gonorrhoea (NCT04010539).

Levonadifloxacin, iv
Alalevonadifloxacin, oral

Phase 3
         ? 

•   Fluoroquinolone; oral prodrug of 
levonadifloxacin, which is the arginine salt 
of S-(–)-nadifloxacin. Nadifloxacin has been 
available since 1993 as a topical drug for acne.60

•   Optimized for Gram-positive activity.
•   Same activity spectrum as that of 

lascufloxacin.
•   Phase 3 trial completed in India for the 

treatment of ABSSSI (NCT03405064).

4.1.5 FabI inhibitor
FabI (enoyl-acyl carrier protein reductase) is 
critical for the final step in elongation of fatty 
acid biosynthesis in many bacteria. As such, it is 
an attractive target for drug development. FabI 
inhibitors have been known since the 1950s, and 
are represented by isoniazid and ethionamide 
for TB treatment and the nonspecific biocide 
and slow-binding FabI inhibitor triclosan. These 
agents have different binding characteristics.61 
It is not known whether they exert selection 
pressure on staphylococci, which could lead to 
cross-resistance.62,63 

Afabicin, iv/oral Phase 2
/   /   /     

•   Afabicin (Debio-1450) is a new 
staphylococcus-specific antibiotic class 
developed for S. aureus infections as iv and 
oral form (prodrug).64 

•   Activity in vitro is comparable to that 
of rifampicin; active against extra- and 
intracellular S. aureus, independent of 
resistance patterns. Slow reduction of 
bacterial load.59 Risk for emergence of high-
level resistance may be offset by high affinity 
to the target.63,65,66 

•   Phase 2 trials in staphylococcal ABSSSI 
(NCT02426918) and bone or joint infections 
(NCT03723551). 
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4.1.6 FtsZ inhibitor
FtsZ is a vital cell division protein that is conserved 
in most bacteria. It undergoes assembly at the 
mid-cell, forming a dynamic membrane-attached 
ring structure which then recruits other division 
proteins to the Y-ring to form the divisome. 
Inhibiting FtsZ blocks cell division, and thus it 
is an attractive target for new antibiotics.67,68  

TXA-709, iv/oral Phase 1
           

•   The orally bioavailable methylbenzamide 
antibiotic TXA-709 and its active metabolite 
TXA-707 target FtsZ and have been tested 
against S. aureus.69 

•   Phase 1 trial not registered.

4.1.7 Oxazolidinones
Oxazolidinones inhibit protein synthesis through 
binding at the P site of the 50S ribosomal subunit. 
They have been in clinical use since 2000; linezolid 
was the first drug approved, followed by tedizolid. 
Modifications of the scaffold may address class-
specific resistance mechanisms. Some agents 
in this class have been developed for C. difficile 
infections and TB.

Contezolid, oral
Contezolid acefosamil, iv/oral

Phase 2/3
/   /   /   

•   Activity against MRSA, vancomycin-resistant 
E. faecium and resistant S. pneumoniae.

•   Little information published, and potential 
differences from linezolid are unclear.70,71 

•   A Phase 2 trial of contezolid acefosamil in 
patients with ABSSSI has been completed 
(NCT02269319) in the United States, and 
a Phase 3 trial of contezolid has been 
completed in China.

4.1.8 Macrolides and ketolides
Macrolides inhibit protein synthesis through 
binding to the 50S ribosomal subunit. They are 
bacteriostatic with activity against many Gram-
positive bacteria and limited activity against 
Gram-negatives. Second-generation semi-
synthetic derivatives of the first natural product 
include clarithromycin and azithromycin.72 

Ketolides are a subclass of the macrolides and 
are structural analogues of erythromycin, a 
14-membered macrolide. They have higher 
affinity than macrolides to domains II and V of the 
23S ribosomal RNA and retain activity against the 
main resistance mechanisms of erythromycin.

 

Solithromycin, iv/oral Phase 3
/   /   /   

•   Activity in vitro similar to that of 
telithromycin.73,74 

•   Cross-resistance with telithromycin not 
known; no cross-resistance with macrolides 
in pneumococci or Group A streptococci, but 
cross-resistance reported in staphylococci.

•   An NDA was filed but rejected by the US 
FDA because liver toxicity had not been 
adequately characterized. The application 
to the EMA has been withdrawn. Fujifilm 
Toyama Chemical has acquired the rights 
to develop solithromycin in Japan, and 
submitted a new drug application in Japan in 
April 2019 for the treatment of ear, nose and 
throat infections. 

•   The NDA in the United States was based on 
two Phase 3 trials for CAP (NCT01756339, 
NCT01968733); and one Phase 3 trial for 
treatment of gonorrhoea (NCT02210325).

Nafithromycin, oral Phase 2
/   /   /    

•   Activity in vitro similar to that of 
telithromycin.75

•   Active against some macrolide- and 
ketolide-resistant pneumococci, but cross-
resistance in ermB-induced pneumococci, 
staphylococci and group A streptococci. 
High MICs to H. influenzae. 

•   Safety and potential liver toxicity unknown
•   Phase 2 trial registered (NCT02903836).

4.1.9 Antibiotic hybrids
Antibiotic conjugates have been researched in 
the last few decades, with a focus on antibiotics 
conjugated to a range of functional moieties to create 
dual-acting agents. Four conjugates (including one 
against C. difficile) are in clinical development, 
mostly against Gram-positive bacteria.
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Cefilavancin, iv Phase 3
/   /   /    

•   A glycopeptide-cephalosporin conjugate. 
•   Phase 2 trial completed (NCT00442832).
•   Phase 3 trial registered (CJ01003003), for 

development in Russia.

TNP-2092, iv/oral Phase 2
/   /   /   ? 

•   Rifamycin-quinolone pharmacophore 
conjugate to prevent fast emergence of 
resistance to the rifamycin antibiotic.76,77

•   Activity comparable to that of rifamycin; clinical 
development of oral form against gastrointestinal 
pathogens, including Helicobacter pylori;78 iv 
form against prosthetic joint infections, including 
S. aureus. 

•   Phase 2 trial recruiting for treatment of 
ABSSSI (NCT03964493). 

TNP-2198, oral Phase 1
/   /   /    

•   Rifamycin-nitroimidazole conjugate active 
against anaerobes; C. difficile, H. pylori and 
bacterial vaginosis. 

•   Phase 1 trial registered in China.

4.1.10 Polymyxins
Polymyxins are cationic polypeptides, that have 
been revived as a last-resort antibiotic against 
extensively resistant Gram-negative bacteria. 
Colistin and polymyxin B are increasingly used, 
but resistance has also emerged in response to the 
increased use. Two new polymyxin derivatives are 
in early clinical development (SPR-741 and SPR-
206). One does not have intrinsic antibacterial 
activity but can enhance the activity of other 
antibiotics through permeabilization of the 
bacterial cell wall. 

SPR-741+ β-lactam, iv Phase 1
?   ?  ?   / 

   A polycationic polymyxin derivative that 
interacts with the negatively charged outer 
membrane of Gram-negative bacteria and 
enables penetration of antibiotics that are 
usually restricted to Gram-positive bacteria.79

•   Expected to be less toxic than other 
polymyxins.

•   Phase 1 pharmacokinetics trial with 
ceftazidime, piperacillin/tazobactam and 
aztreonam completed (NCT03376529).

SPR-206, iv Phase 1
        /

•   Polymyxin nonapeptide.80 
•   It is still unclear whether lower MIC values 

will translate into useful activity in colistin-
resistant strains and what role nephrotoxicity 
will play in the clinical management of 
patients.

•   Phase 1 trial recruiting (NCT03792308). 

 
 
4.2 Agents in development for treating  
TB infections

Human TB is caused by M. tuberculosis. Among 
the estimated 10 million new TB cases occurring 
worldwide in 2018, an estimated 500,000 
new cases (5%) were resistant to rifampicin or 
rifampicin and isoniazid, two of the most important 
first-line TB drugs.81 Innovative new treatments, 
particularly for drug-resistant TB, are urgently 
needed. Currently, 12 agents are being developed 
against M. tuberculosis of which seven meet 
the innovation criteria of the absence of known 
cross resistance. Several new targets are being 
pursued, including DprE1 (decaprenylphosphoryl-
β-D-ribose 2-epimerase), which is important for 
cell wall synthesis, and leucyl-tRNA synthetase 
(LeuRS), which is important for protein synthesis. 
Among agents in development for treating TB, 
four target DprE1, one targets LeuRS, and one is 
a GyrB inhibitor. In addition, three oxazolidinones, 
a riminophenazine (clofazimine analogue), one 
imidazopyridine amide and one ethambutol 
derivative are in clinical development (Table 4). 
More information will be needed to assess the 
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Name
(synonym)

Phase Antibiotic class Route of administration (developer) Innovation

NCR CC T MoA

SQ-109 2/3 Ethambutol derivative oral (Sequella/Infectex) – – – –

GSK-3036656 (GSK070) 2 LeuRs inhibitor (oxaborole) oral (GSK)    

Delpazolid (LCB01-0371) 21 Oxazolidinone oral (LegoChem Biosciences/HaiHe Biopharma) – – – –

Sutezolid 22 Oxazolidinone oral (TB Alliance/Sequella) – – – –

Telacebec (Q-203) 2 Imidazopyridine amide oral (Qurient/Infectex)    

BTZ-043 2 DprE1 inhibitor
(benzothiazinone)

oral (University of Munich; Hans Knöll Institute, 
Jena; German Center for Infection Research)    

Macozinone (PBTZ-169) 2 DprE1 inhibitor 
(benzothiazinone)

oral (Innovative Medicines for Tuberculosis 
Foundation)3    

OPC-167832 1/2 DprE1 inhibitor 
(3,4-dihydrocarbostyril)

oral (Otsuka)
   

SPR-7204 1 GyrB inhibitor
(benzimidazole ethyl urea)

oral (Spero) -  – –

TBA-7371 1 DprE1 inhibitor
(azaindole)

oral (TB Alliance, Bill & Melinda Gates Medical 
Research Institute, Foundation for Neglected 
Disease Research)

   

TBI-1665 1 Riminophenazine  
(clofazimine-analogue)

oral (Institute of Materia Medica, TB Alliance, 
Chinese Academy of Medical Sciences & Peking 
Union Medical College)

– – – –

TBI-223 1 Oxazolidinone oral (TB Alliance/Institute of Materia Medica) – – – –

Table 4. Antibiotics for the treatment of TB and non-tuberculous mycobacteria in clinical development

Innovation assessment:  criterion fulfilled; ? Inconclusive data; – criterion not fulfilled. 
These agents are being developed for use against TB and non-tuberculous mycobacteria. Their activity against other priority pathogens 
was not systematically assessed.
1 Delpazolid also completed a Phase 1 trial as an injectable for MRSA and VRE spp. infections.
2 Developed by Sequella and independently by the TB Alliance; non-exclusive patent license held by Sequella and by the Medicines 
Patent Pool. 
3 In Russia developed by Nearmedic Plus.
4 The GyrB/ParE inhibitor novobiocin is no longer in clinical use.
5 Clofazimine is approved for leprosy and used also for TB (off-label).

potential role of these individual agents in future 
anti-TB treatment, in particular any contribution 
they might bring to combination regimens.

In August 2019, the FDA approved pretomanid, 
a nitroimidazo-oxazine, which was developed by 
TB Alliance. Pretomanid is part of a three-drug 
(in combination with bedaquiline and linezolid), 
6–9-month, all-oral regimen for treating adult 
patients with XDR TB and treatment-intolerant or 

non-responsive MDR pulmonary TB. Pretomanid 
was approved under the Limited Population 
Pathway for Antibacterial and Antifungal Drugs.82 
Pretomanid is the first new TB drug to be 
successfully developed and registered by a not-
for-profit organization. This demonstrates the 
important role played by product development 
partnerships in addressing unmet public health 
needs and working in collaboration with the 
pharmaceutical industry.
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SQ-109, oral Phase 2/3
•   An ethambutol derivative.
•   Ethambutol analogue, inhibits mycobacterial 

membrane protein large 3 (MmpL3) 
transporters, which are involved in 
exporting mycolic acids for synthesis of the 
mycobacterial cell wall. 

•   A Phase 2 trial for treatment of H. pylori 
infection (NCT01252108) was withdrawn 
due to lack of funding. Two Phase 2 
trials for treatment of TB are completed 
(NCT01785186, NCT01218217). Phase 2b 
trial completed in the Russian Federation.83

GSK-3036656, oral Phase 2
•   GSK-3036656 (GSK070) belongs to a novel 

class (axoborole) with a new mechanism of 
action that inhibits LeuRS.

•   Phase 2 bactericidal activity trial currently 
recruiting (NCT03557281).

Delpazolid, oral Phase 2
•   Delpazolid (LCB01-0371), belongs to the 

class of oxazolidinones.
•   Presently recruiting in a Phase 2 early 

bactericidal activity trial (NCT02836483).
•   Also completed a Phase 1 trial as an 

injectable for MRSA and VRE (vancomycin-
resistant Enterococci).

Sutezolid, oral Phase 2
•   Belongs to the class of oxazolidinones.
•   Phase 2 trial currently recruiting 

(NCT03959566).

Telacebec, oral Phase 2
•   Telacebec (Q-203) is an imidazopyridine 

amide that inhibits cytochrome bc1 in the 
respiratory chain.

•   Phase 2 trial recently completed (September 
2019) (NCT03563599).

SPR-720, oral Phase 1
•   DNA gyrase GyrB inhibitor, developed 

for infections caused by non-tuberculous 
mycobacteria.

•   Phase 1 trial recently completed (October 
2019) (NCT03796910).

TBI-166, oral Phase 1
•   Derived from riminophenazine analogues 

(clofazimine-analogue; clofazimine has 
been used in leprosy since 1962); currently 
in development in China.

•   Phase 1 trial not registered. 

TBI-223, oral Phase 1
•   Belongs to the class of oxazolidinones.
•   In Phase 1 trial (NCT03758612).

 

4.2.1 DprE1 inhibitors
These four compounds inhibit DprE1, which 
is a flavoenzyme that catalyses a key step in 
the synthesis of the complex cell wall of M. 
tuberculosis.84 The mechanism of action of many 
compounds discovered in TB phenotypic screening 
programmes appears to be through inhibition of 
this flavoenzyme.

BTZ-043, oral Phase 2
•   DprE1 inhibitor, benzothiazinone.
•   Phase 1 trial completed (March 2019) 

(NCT03590600). 
•   Phase 2 multiple ascending dose study 

registered to evaluate early bactericidal 
activity (NCT04044001).

Macozinone, oral Phase 2
•   Macozinone (PBTZ-169) is a DprE1  

inhibitor, benzothiazinone. 
•   Phase 1 trials ongoing (NCT03036163, 

NCT03776500). 
•   A Phase 2a trial in the Russian Federation 

was terminated due to slow enrolment 
(NCT03334734).
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4.3 Agents in development for treating  
C. difficile infections

Infections with C. difficile can cause severe 
enterocolitis and are a serious public health threat 
in developed countries. C. difficile infections are 
primarily managed by prevention, control and 
antimicrobial stewardship, and treatment options 
are still available. Therefore, C. difficile was not 
reviewed for inclusion in the WHO priority pathogens 
list for R&D. Nonetheless, agents developed for C. 
difficile infections are listed in Table 5.85

Name
(synonym)

Phase Antibiotic class Route of administration 
(developer)

Innovation

NCR CC T MoA

Ridinilazole 3 Bis-benzimidazole oral, not absorbed (Summit)    

OPS-2071 2 Quinolone oral (Otsuka) – – – –

DNV-3837 (MCB-3837) 2 Oxazolidinone-quinolone 
hybrid

iv (Deinove) – – – –

MGB-BP-3 2 DNA minor groove binder 
(distamycin)

oral, not absorbed  
(MGB Biopharma)    

ACX-362E 1 DNA polymerase IIIC inhibitor oral, not absorbed  
(Acurx Pharmaceuticals)    

CRS3123 1 Methionyl-tRNA synthetase 
inhibitor (MetRS)

oral (Crestone; National Institute 
of Allergy and Infectious Diseases)    

Table 5. Antibiotics (small molecules) for the treatment of C. difficile infections in clinical development

Innovation assessment:  criterion fulfilled; ? Inconclusive data or no agreement by the advisory group; – criterion not fulfilled. 
These agents are being developed for C. difficile infections; their activity against WHO priority pathogens was not assessed. 

Ridinilazole, oral Phase 3
•   Non-absorbable bis-benzimidazole, new 

structure with a new mode of action that is 
not yet clear. It might inhibit cell division by 
binding to the DNA minor groove.86–89 

•   Phase 2 trials completed (NCT02784002, 
NCT02092935), and a Phase 3 trial is 
currently recruiting (NCT03595566).

OPS-2071, oral Phase 2
•   Quinolone, chemical structure undisclosed. 
•   Developed for enteric infections, including 

due to C. difficile.
•   Phase 2 trials ongoing (NCT02473393, 

NCT03850509).

DNV-3837, iv Phase 2
•   Prodrug, oxazolidinone-quinolone hybrid 

for iv treatment.90 The activity comes from 
the oxazolidinone moiety. 

•   Phase 2 trial recruiting (NCT03988855).

MGB-BP-3, oral Phase 2
•   Non-absorbable antibiotic with a novel 

chemical structure (distamycin derivative), 
a new target and mode of action 
(DNA minor groove binder). It acts on 
multiple binding sites and interferes with 
transcription.91,92

•   Active against Gram-positive bacteria; 
resistance in Gram-negative bacteria 
through efflux pumps.

•   Phase 1 trial completed (NCT02518607)

OPC-167832, oral Phase 1/2
•   DprE1 inhibitor, 3,4-dihydrocarbostyl 

derivative.
•   Phase 1/2 trial for uncomplicated pulmonary 

TB is recruiting (NCT03678688).

TBA-7371, oral Phase 1
•   DprE1 inhibitor, azaindole.
•   Phase 1 trial completed (NCT03199339).
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ACX-362E, oral Phase 1
•   New chemical class with a new target and a 

new mode of action: DNA polymerase IIIC 
inhibitor. 

•   A Phase 1 trial is under way but not 
registered. 

CRS3123, oral Phase 1
•   New chemical class with a new target and 

a new mode of action: a diaryldiamine 
derivative that inhibits the Met-aminoacyl-
tRNA synthetase.93

•   Active against Gram-positive bacteria, 
including C. difficile; inhibits toxin 
production in vitro. 

•   Little information about the propensity for 
emergence of single-step resistance due to 
target mutations.

•   Systemic absorption only at higher doses.
•   Phase 1 trial completed (NCT01551004, 

NCT02106338); Phase 2 trial planned.

4.4 Biological agents

Ten biologicals are included in this report, 
comprising monoclonal and polyclonal antibodies, 
and phage endolysins (Table 6). The scope will be 
expanded for the 2020 update (see Discussion). 
Only one biological antibacterial that targets 
C. difficile toxins, bezlotoxumab, is currently 
approved. Hence, all these products can in 
principle be considered innovative, as they target 
new structures through new modes of action. 
So far, these non-traditional agents have been 
developed for pre-emptive or adjunctive therapy. 
Their potential use for single agent therapy remains 
to be proven,94 and there have been several clinical 
failures in the past.95 

Name
(synonym)

Phase Antibiotic class Route of administration 
(developer)

Expected activity 
against priority 
pathogens

PA SA CD

AR-301  
(tosatoxumab, salvecin)

3 Anti-S. aureus immunoglobulin M  
(IgM) monoclonal antibody

iv (Aridis) /  /

MEDI-4893  
(suvratox-umab)

2 Anti-S. aureus IgG monoclonal  
antibody

iv (MedImmune) /  /

CF-301 (exebacase) 2 Phage endolysin iv (ContraFect) /  /

SAL-200 (tonabacase) 2 Phage endolysin iv (Intron Biotechnology) /  /

MEDI-3902 
(gremubamab)

2 Anti-P. aeruginosa IgG  
monoclonal antibody

iv (MedImmune)
 / /

AR-101  
(panobacumab, aerumab)

21 Anti-P. aeruginosa serotype O11 IgG 
monoclonal antibody

iv (Aridis, Shenzhen Arimab 
Biopharmaceuticals Co.)  / /

514G3 2 Anti-S. aureus IgG monoclonal antibody iv (XBiotech) /  /

DSTA-4637S 1 Anti-S. aureus IgG monoclonal  
anti-body/rifamycin

iv (Genentech/Roche) /  /

IMM-529 1/2 C. difficile polyclonal antibody oral (Immuron) / / 

PolyCab 1 C. difficile polyclonal antibody iv (MicroPharm) / / 

Table 6. Biological antibacterial agents in clinical development

Pathogen activity  active; / not applicable. 
Abbreviations: CD, C. difficile; PA, P. aeruginosa; SA, S. aureus. 
These biologics are not influenced by conventional resistance mechanisms, and the criterion of innovation was not applied. 

1 Clinical development only for China.
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4.4.1 Activity against S. aureus

AR-301, iv Phase 3
•   Anti-S. aureus immunoglobulin G1 (IgG1) 

monoclonal antibody targets virulence 
factor α-toxin.

•   Phase 1 and 2 proof-of-concept trial 
(NCT01589185) completed. 

•   Phase 3 trial for the adjunctive treatment 
of S. aureus VAP currently recruiting 
(NCT03816956).

MEDI-4893, iv Phase 2
•   Anti-S. aureus IgG monoclonal antibody 

targets virulence factors α-toxin and 
surface-localized clumping factor A.96

•   Long half-life, estimated to be 80–112 
days.97

•   In Phase 2 trial (NCT02296320).

CF-301, iv   Phase 2
•   A phage endolysin similar to SAL-200.98 
•   No resistance appears to emerge in serial 

passages.
•   Similar questions about immunogenicity as 

for SAL-200.
•   Phase 2 trial completed (NCT03163446).

SAL-200, iv Phase 2
•   Recombinant form of phage endolysin 

SAL-1, an enzyme that destroys the 
peptidoglycan cell wall of a bacterium to 
release new virus particles.99

•   Fast killing of S. aureus; synergistic with 
antibiotics.

•   Very short half-life.100

•   An immune response against the enzyme 
might limit its usefulness; antibodies were 
detected in 37% of volunteers, but it is not 
clear whether this is clinically relevant.

•   Phase 2 trials (NCT03089697, 
NCT03446053) for treatment of persistent 
S. aureus bacteraemia.

514G3, iv Phase 2
•   Anti-S. aureus IgG3 monoclonal antibody 

targets virulence factor SpA (involved in 
immune evasion); cloned from the B cells 
of a healthy human donor with pre-existing 
antibodies against SpA.101

•   Phase 1 and 2 trials completed for 
adjunctive treatment of bacteraemia 
caused by S. aureus (NCT02357966).

DSTA-46375, iv  Phase 1
•   Thiomab-antibiotic conjugate, anti-S. 

aureus IgG monoclonal antibody bound to 
a rifamycin analogue.

•   Antibody binds to surface proteins of 
S. aureus and releases rifamycin to kill 
intracellular S. aureus.102 

•   Phase 1 trial on pharmacokinetics 
and safety in patients with S. aureus 
bacteraemia (NCT03162250).

  
4.4.2 Activity against P. aeruginosa

MEDI-3902, iv   Phase 2
•   Anti-P. aeruginosa IgG monoclonal antibody; 

targets virulence factors Psl and PcrV, which 
are involved in the secretion of multiple 
virulence factors.103,104

•   Clinical trials for the prevention of VAP 
caused by P. aeruginosa in colonized patients.

•   Phase 2 trial under way for VAP 
(NCT02696902). 

AR-101, iv Phase 2
•   Anti-P. aeruginosa serotype 011 IgG1 

monoclonal antibody binds to surface 
polysaccharide alginate to enhance immune 
response.

•   Phase 2a trials completed for hospital-
acquired pneumonia  in 2009. 

•   Currently in clinical development in China.
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4.5 Agents that are not under active 
development or for which there is no recent 
information

In the antibiotic field, it is not uncommon for 
companies to suspend product development 
for several years, in the hope that the product 
may be bought by another company or that they 
can continue development at a later stage. Such 
compounds are still listed in the (online) clinical 
development pipelines, but typically do not move 
through the clinical development pathway. If such 
products have not shown any activity for at least 5 
years, they are listed in Table 7 as agents that are 
not under active development or for which there is 
no recent information. 

4.4.3 Activity against C. difficile

IMM-529, oral Phase 1/2

•   Anti-C. difficile polyclonal antibody (IgG, 
IgA, IgM) against toxin A + B derived from 
vaccinated cow’s colostrum. 

•   Also targets C. difficile spores and 
vegetative cells.

•   80% efficacy in prophylaxis and therapy in 
animal models.

•   Phase 1/2 trial registered (NCT03065374).

PolyCab, iv  Phase 1
•   C. difficile polyclonal antibody against C. 

difficile toxins produced in sheep.
•  Phase 1 trial registered (ISRCTN80902301).

Name
(synonym)

Phase Antibiotic class Developer

GT-1 1 Siderophore-cephalosporin Geom

CB-618 1 DBO-BLI Merck 

IDP-73152 1 Peptide deformylase (PDF) inhibitor IlDong

TD-1607 1 Glycopeptide-cephalosporin hybrid Theravance

KBP-5081 1 Oxazolidinone Xuanzhu/KBP BioSciences

KBP-0078 1 Oxazolidinone Xuanzhu/KBP BioSciences

DS-2969 1 GyrB inhibitor Daiichi Sankyo

YF-49-92.MLS 1 Nitroimidazole C & O Pharmaceutical

GSK-3342830 1 Siderophore-cephalosporin GSK

Ramoplanin 2 Lipodepsipeptide Nanotherapeutics 

CG400549 2 FabI inhibitor CrystalGenomics

Finafloxacin 2 Fluoroquinolone MerLion

Brilacidin 2 Novel member targeting antibiotic Innovation Pharmaceuticals

Kelimycin 3 Macrolide IMB/CAMS/Shenyang Tonglian

Table 7. Agents that are not under active development or for which there is no recent information   

Underlined: New chemical class. 
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5.1 New agents insufficiently address a global 
need

Of the eight new antibiotics, including one for the 
treatment of TB, that have been approved since 
2017 (delafloxacin, vaborbactam + meropenem, 
eravacycline, omadacycline, relebactam + 
imipenem/cilastatin, lefamulin, plazomicin 
and pretomanid) only two ― vaborbactam + 
meropenem and lefamulin ― represent a new 
chemical scaffold. The other newly approved 
antibiotics are derivatives of known classes such 
as the two tetracycline derivatives eravacycline 
and omadacycline. Only eravacycline has activity 
against CRE. Omadacycline’s modification of the 
scaffold was focused on Gram-positive bacteria 
with an orally available alternative that may offer 
a clinical advantage in certain situations compared 
to existing agents.14 

Vaborbactam + meropenem and plazomicin 
were added to the WHO Model List of Essential 
Medicines as essential antibiotics. Delafloxacin was 
classified as a Watch antibiotic in the WHO AWaRe 
classification, whereas vaborbactam + meropenem 
along with eravacycline, omadacycline and 
plazomicin were classified as Reserve antibiotics to 
be used as last-resort antibiotics and a key target 

in antimicrobial stewardship activities. Pretomanid 
was the only antibiotic agent approved for the 
treatment of TB infections.

The above-listed broad-spectrum antibiotics have 
been mainly approved for the treatment of cUTI 
and/or cIAI in addition to two new antibiotics for 
CAP. Further evidence is needed to evaluate the 
true added clinical value of these agents. It is 
assumed that the majority of these new agents will 
mainly be used in tertiary health-care facilities for 
targeted treatment where microbiological results 
are available to treat infections caused by the 
critical and high-priority pathogens. Thus, there is 
also an urgent need for accessible and affordable 
diagnostics and the building of laboratory capacity 
in low-resource settings to support the responsible 
use of these agents. 

5.2 The current clinical pipeline remains 
insufficient against priority pathogens

Overall there are currently 50 antibiotics and 
combinations (with a new therapeutic entity), 
and 10 biologicals in the clinical pipeline (Phase 
1–3) targeting the priority pathogens, TB and C. 
difficile. A total of 32 antibiotics target the priority 

5. Discussion and outlook 

Fig. 2. Summary of antibiotics in the clinical pipeline targeting the WHO priority pathogens

  β -lactam + BLI ....................13

  Tetracycline ..........................3

  Aminoglycoside .....................1

  Topoisomerase inhibitor ..........4

  Macrolide/ketolide .................2

  Oxazolidinone .......................1

  Polymyxin .............................2

  Antibiotic hybrid ....................3

  FabI inhibitor ........................1

  FtSZ inhibitor ........................1

  Other ..................................1
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1  WHO draft AMR impact fund financial model, 2019

pathogens, 12 target TB and six target C. difficile 
infections (Fig. 2). There has been some progress 
in the number of antibiotics targeting the critical 
Gram-negative bacteria, with just over half of 
the 32 antibiotics targeting at least one of these 
bacteria. However, only two of these ― cefiderocol 
(Phase 3) and SPR-206 (Phase 1) ― have activity 
against all three critical priority pathogens. 

The majority of antibiotics targeting the priority 
pathogens are β-lactam and BLI combinations (Fig. 
2). The antibacterial agents in clinical development 
do not sufficiently address the problem of 
extensively or pan-drug-resistant Gram-negative 
bacteria. The critical priority pathogens, in 
particular carbapenem-resistant A. baumannii 
and P. aeruginosa are insufficiently addressed 
in the clinical pipeline. New antibacterial agents 
without pre-existing cross-resistance are urgently 
needed, especially for geographical regions with 
high resistance rates of Gram-negative bacteria.

5.3 More innovative approaches are 
required, but there are scientific and 
economic challenges

Six of the 32 antibiotics being developed for the 
treatment of priority pathogens met at least one of 
the innovation criteria. These include two boronate 
BLIs (taniborbactam + cefepime and VNRX-7145 
+ ceftibuten), two new topoisomerase inhibitors 
(zoliflodacin and gepotidacin) as well as a new FabI 
inhibitor (afabicin) and an FtsZ inhibitor (TXA709). 
The two novel bacterial topoisomerase II inhibitors 
are chemically distinct but are in the same 
functional class, and there is little information 
on potential cross-resistance, with only some 
cross-resistance reported for gepotidacin. The 
functional class of BLIs is predicted to show some 
cross-resistance to other BLI classes despite 
belonging to a new chemical class. Due to other 
resistance mechanisms, cross-resistance to other 
β-lactams and BLI combinations will be seen when 
they are used clinically. In addition, there are 
seven innovative products targeting TB of which 
four are DprE1 inhibitors with different chemical 
structures. In addition, there are four innovative 
products targeting C. difficile infections. 

Of the 10 biological treatments in clinical 
development, six target S. aureus and two P. 
aeruginosa. An additional two target C. difficile. 
All of the biologicals, comprising six monoclonal 

antibodies, two polyclonal antibodies and two 
phage-derived endolysins, are currently being 
developed as pre-emptive or adjunctive treatments. 
While the biologicals can be considered innovative, 
their potential use as alternative treatment options 
has yet to be proven, and it seems unlikely that they 
could be used to replace therapeutic antibiotics. 
The higher costs of monoclonal antibodies 
compared with regular antibiotics may also limit 
their potential use as alternative treatments, 
especially in low- and middle-income countries.105 

Overall, the pipeline is dominated by improvements 
of existing classes. While this has the advantage 
that the risky discovery process starts with a 
well-characterized, validated lead, some level of 
cross-resistance and fast adaptation of bacterial 
populations can be expected. Most searches for 
modified molecules of known classes focused on 
certain class-specific resistance mechanisms. This 
resulted in improvement but not in full restoration 
of susceptibility in a given pathogen. Ideally, R&D 
should result in entirely new classes, targets and 
modes of action to avoid cross-resistance to 
existing antibiotics.106

Finding novel chemical structures with new 
binding sites and new modes of action is, however, 
scientifically difficult and less successful than 
drug discovery in other fields.107 The challenges 
include finding compounds that have more than 
one binding site (in order to avoid single-step 
resistance) and that penetrate the outer layers of 
Gram-negative cell walls without being pumped 
out immediately by efflux pumps. Another general 
hurdle is toxicity due to the high concentrations 
required to kill bacteria. 

The lack of diverse compounds suitable for 
bacterial treatment in the chemical libraries of 
pharmaceutical companies and the low specificity 
of screening methods represent major challenges. 
The absence of new, suitable chemical matter 
to serve as leads for drug discovery is a major 
bottleneck in antibiotic discovery.108 

5.4 Non-traditional approaches are 
attracting R&D interest

In addition to direct-acting small molecules 
(“traditional antibiotics”) and large molecules 
(antibodies and endolysins) that have been analysed 
in this clinical pipeline report, some additional, 
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non-traditional medicines have reached the clinical 
phase of development. The most advanced of 
these in the clinic are microbiome-modulating 
therapeutics directed against recurrent C. difficile 
infection and include rationally selected live 
bacteria or synthetic microbiota (engineered live 
bacteria).109 Other non-traditional therapies against 
recurrent C. difficile infection are an antibiotic-
inactivating β-lactamase (oral cephalosporinase) 
and a toxin binder (activated charcoal). With a 
few exceptions, other types of non-traditional 
agents (virulence inhibitors, immunomodulators 
and phage/phage derived products) are not yet 
in clinical development. All of these agents face 
substantial development hurdles.110 They will be 
included in the 2020 pipeline update.

5.5 Market dynamics remain unfavourable

While public investment in the development of 
antibacterial agents has increased in recent years, 
mainly from Germany, the United Kingdom and 
the United States through mechanisms such as 
BARDA, CARB-X and GARDP, private investment 
has further decreased with even more big 
pharmaceutical companies abandoning the area 
over the past years. The bankruptcy of Achaogen is 
a prominent example of how difficult it is for small 
companies that develop such products to raise 
private funds in addition to public investment. This 
is linked to the economic problems that all recently 
approved antibiotics are facing. Sales of branded 
antibiotics in their main market, the United States, 
are very low. During the period from August 2018 
to July 2019, for example, sales ranged from US$ 
0.8 million (zemdri/plazomicin) to US$ 143.1 
million (teflaro/ceftaroline fosamil).1 This does not 
allow these companies to survive and sustain their 
R&D activities nor to fulfil their final regulatory 
commitments, including paediatric formulations 
and ongoing surveillance. One reason for the 
lack of financial return is that many of the new 
antibiotics that came to market are not innovative. 
Their clinical benefits or advantages over existing 
(cheaper) antibiotics are not clear enough and not 
underpinned by clinical trial outcomes. This lack 
of differentiation to existing treatment options 
makes it difficult to convince clinicians of the drugs’ 
potential value in certain situations and to find a 
place in the treatment landscape, within treatment 
guidelines and formularies. The problem, however, 

goes beyond that, as overall reimbursement for new 
antibiotics is often compared to generic standard of 
care. Governments are starting to react; the United 
States has revised its hospital reimbursement 
system, and the United Kingdom and Sweden are 
running pilot projects to test how to procure and 
pay for antibiotics differently. Other countries 
need to follow suit to build confidence that new, 
innovative antibiotics are a good investment both 
from a public health as well as from a business 
perspective. All these efforts should focus on the 
most useful and innovative products in the clinical 
and preclinical pipeline. 

5.6 The pipeline outlook remains bleak

Given the average progression rates and 
development duration111  (average development 
time from Phase 1 until approval is approximately 7 
years), the current pipeline could lead to a further 
11 new antibiotic approvals in the next 5 years, 
the majority of which are modifications of existing 
classes and not active against the critical MDR and 
XDR Gram-negative bacteria. In addition, due to 
limited funding for Phase 2 and 3 clinical trials, 
there is a risk that agents will remain stagnant in 
these phases due to the high cost of conducting 
the trials. 

Of the 10 antibiotics in Phase 1 that are possibly 
active or active against the critical resistant Gram-
negative bacteria, approximately one will be make 
it to the market in the next 10 years (using an 
attrition rate estimate of 14% for antibiotics for 
Phase 1 products).112 This outlook has remained 
the same since the 2017 report. 

Governments and R&D stakeholders need to 
collectively identify new solutions to reinvigorate 
funding towards antibacterial R&D and to improve 
the efficiency of and costs of late-stage clinical 
trials. The basis of all R&D activities should be 
innovation and the increased societal value of 
antibiotics to ensure a viable market as well as 
access to and responsible use of new and existing 
antibiotics. This is currently not the case for the 
clinical antibacterial pipeline.  
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6.1 Variable data quality

The aim of this report is to provide a complete, 
accurate picture of 2019 clinical development 
activities on the basis of publicly available 
data. While every effort was made to ensure 
that the analysis was as complete as possible, 
and assessments were based on peer-reviewed 
publications, the availability and quality of the data 
continue to vary.

A range of sources was used to find information 
about products in development. None of the public 
databases searched (peer-reviewed literature, 
patents, clinical trials) covered all the products that 
were finally listed in this report. Knowledge of drug 
development projects, especially for early-stage 
products, relies to a certain extent on informal 
information from experts in the field, including 
from presentations and posters given at scientific 
conferences and business meetings. We considered 
such projects only when the information about 
them was publicly available. 

Despite WHO’s position on clinical trial 
transparency, some of the products in the pipeline 
are not listed in any clinical trial registry, and the 
results of most trials were not disclosed within the 
recommended 12 months after completion. The 
absence of critical data from earlier phases and 
from randomized controlled trials complicated 
the assessment of some agents in advanced 
development phases. It is essential that any public 
investment in antibiotic drug development includes 
an obligation to adhere to clinical trial transparency 
standards and to publish both positive and negative 
results. 

Data inequality impeded assessment of expected 
activity against priority pathogens. While peer-
reviewed assessments of activity were available for 
some agents, for others we had to rely on publicly 
available company information or comparisons 
with other agents with a similar structure if no data 
was published. 

Assessments of innovations were also subject to 
certain limitations. Lack of known cross-resistance 

is the most relevant criterion of innovation in the 
context of antibiotic resistance. A new chemical 
scaffold, a new target/binding site and a new 
mode of action are “surrogate markers” and good 
predictors of lack of cross-resistance. For these 
reasons, the four aspects were assessed separately. 
There is, however, no clear definition of “surrogate 
markers”, and a “?” in some instances indicates 
that the experts could not agree whether a criterion 
had been fulfilled. For some compounds, lack of 
information (e.g. structure not published) made 
assessment impossible. Developers should make a 
special effort to define and characterize the cross-
resistance of their agents with existing classes. 
When this information was available, it allowed 
categorization of a compound.

6.2 Limitations 

The review of the clinical antibacterial pipeline 
was undertaken with certain limitations, including 
reliance on data available in the public domain 
and input from the advisory group, which led to 
a degree of publication bias. Certain limitations 
were addressed through an additional effort to 
capture drug candidates being developed in China, 
Japan and the Russian Federation to ensure a 
more comprehensive global analysis. Further 
targeted efforts will be taken into consideration 
for future updates as well as the expansion of the 
geographical background of the advisory group. 

All individuals and/or companies are encouraged 
to register clinical trials in line with the WHO 
International Standards for Clinical Trial Registries 
and through the ICTRP. The WHO Secretariat 
welcomes any additional information and/or feedback 
on the data presented in this document, which 
should be sent to antibacterialpipeline@who.int 
for incorporation in subsequent publications. 

The membership of the advisory group has been 
expanded for greater geographical balance; 
however, the membership will be reviewed and 
adjusted on an annual basis, and added efforts 
made to increase the geographical and gender 
balance. 

6. Methodological considerations
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6.3 Planned changes for the 2020 update

On 1 October 2019, the advisory group reviewed 
the current methodology and scope and agreed on 
the following for the 2020 update and subsequent 
updates thereafter:

•   expand the scope to include non-traditional 
products; and

•   expand the route of administration to include 
inhaled products. 
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