Republic of Senegal

One People - One Goal - One Faith

MINISTRY OF PUBLIC HEALTH AND PREVENTION DEPARTMENT OF MEDICAL PREVENTION

EPI Comprehensive Multiyear Plan 2012-2016

Complete Multi-Year EPI Plan 2012-2016

Preface

In Senegal, as in other Sub-Saharan countries in Africa, vaccine preventable diseases are the leading cause of mortality for children under 5. Senegal's vaccination policy is derived from the National Health Development Plan (NHDP) which itself is based on strategies proposed in the Economic and Social Policy Document (DPES), representing a unique framework for action by all participants in Senegal's development.

Since 2001, the Expanded Program for Immunisation in Senegal has been a dynamic and effective program tackling 9 diseases. In 2004, Senegal introduced into the routine EPI the Hepatitis B vaccine, and in 2005, introduced the pentavalent vaccine against HIB. DTC3 coverage (penta3 since 2005) went from 45% in 2001 to 87% in 2009; for the measles vaccine, coverage when from 42% in 2001 to 80% in 2009. Senegal was declared free from the circulation of the indigenous wild Polio virus in 2004. Since 2004, there have been no cases of death from measles reported; in contrast, the country reported more than 1,000 cases in 2001. In 2009, all the districts reached their goal of less than one case of Neonatal Tetanus per 1,000 live births, making progress toward eradicating MNT in Senegal. All the districts organised follow-up and preventive campaigns against yellow fever between 2002 and 2007. The incidences of bacterial Hib meningitis in infants less than 1 year old dropped from 21.5 cases per 100,000 in 2003 to 1.4 cases per 100,000 in 2007, following the introduction of the vaccine in 2005.

For the period 20012-2016 in the current multi-year plan, the objectives predict a contribution to the reduction of infant and juvenile mortality and the improvement of maternal health by vaccination and by surveillance of targeted EPI diseases and potentially epidemic diseases. This multi-year plan report was drafted based on a strong situational analysis, with a particular emphasis placed efficient vaccine management in 2009, a logistical inventory and an external review in 2010. This situational analysis has allowed EPI performance to be summarized and to formulate relevant recommendations so it can be improved. This plan establishes priorities, develops strategies, determines the main activities involved, and evaluates the costs as well as the sources of financing for the 2012 to 2016 period. This plan is notable for its introduction of 2 new vaccines, the pneumococcus vaccine in 2012 and the rotavirus vaccine in 2013. Also, a vaccination campaign against meningitis is planned, using the XXX [sic] vaccine. The cost of the EPI for the period from 2012 to 2016 is \$207,012,833 (CFAF 96,407,946,456) and it is 99% funded if the country of Senegal covers its responsibilities and if its partners confirm their intentions (assured and likely funding).

This plan is the outcome of participation among all those involved in the vaccination field in Senegal. The Ministry of Health and Prevention considers it the national document of reference and recommends it be adopted by all participants to encourage a greater synergy of action for the implementation of diverse projects, programs and other approaches.

The Ministry of Health and Prevention

Modou DIAGNE FADA

LIST OF ABBREVIATIONS

NRA	Autorité Nationale de Réglementation [National Regulatory Authority]							
BCG	Bacille de Calmette et Guérin (immunisation against tuberculosis)							
СІВ	Consolidated Investment Budget							
BRISE	Bureau Régional de L'immunisation et de la Surveillance Epidémiologique [Regional							
	Office for Immunisation and Epidemiological Monitoring]							
BS	Sharps Box							
CASES	Communication for Changing Behaviour							
ICC	Inter-Agency Co-ordination Committee							
СС	Cold Chain							
CDT	Medium-Term Expenditure Framework							
MTEF	Medium-Term Expenditure Framework (MTEF)							
IPC	interpersonal Communication							
CNCPEV	Comité National de Coordination du Programme Elargi de Vaccination [National							
	Committee for Coordinating the Program in Expanded Immunisation]							
PNC	Prenatal Consultation							
VC	Vaccination Coverage							
DGAE	Department of General Administration and Equipment							
DANSE	Division de l'Alimentation, de la Nutrition et de la Survie de l'enfant [Food, Nutrition							
	and Infant Survival Division]							
ID	Immunisation Division							
DPES	Economic and Social Policy Document							
DPL	Direction de La Pharmacie et des Laboratoires [Pharmacy and Laboratories							
	Department]							
DPM	Direction de la Prévention Médicale [Medical Prevention Department]							
DPS	Department of Planning and Statistics							
DREAT	Delegation for Reform of the State and Technical Assistance							
HD	Direction de la Santé [Health Department]							
DSE	Division de la Surveillance Epidémiologique [Epidemiological Monitoring Division]							
PRSP:	Each District Approach							
DTP	Diphtérie Tétanos Coqueluche (immunisation against diphtheria, tetanus and							
	pertussis)							
DMT	District Management Team							
RMT	Equipe Cadre de District [Regional Management Team]							
EDS	Enquête Démographique et de Santé [Demographic and Health Survey]							
ESIS	Enquête Sénégalaise sur les Indicateurs de Santé [Senegal Health Indicators Survey]							
GAVI	Global Alliance for Vaccines and Immunisation							
GIVS	Global immunization: vision and strategies							
IEC	Information Education Communication							
NMD	National Micronutrient Days							
NVD	National Vaccination Days							
JSE	Days of child's survival							
LUXDEV	Luxembourg Agency for Development Cooperation							
APVS	Manifestations Adverse Post Immunisation [Adverse Post-Immunisation Symptoms]							
MCA	Millenium Challenge Account							
MCD	Senior District Physician							
MCR	Senior District Physician							
MII	Promotion of sprayed mosquito nets:							
MLM	Mid Level Management							
OCB	Organisation Communautaire de Base [Basic Community Organisation]							

MDG	Millennium Development Objectives
WHO	World Health Organization
NGO	Nongovernmental Organization
PC	Complete package
IPT	Prise en Charge Intégrée des Maladies de l'enfant [All-inclusive Child Disease Care]
VVM	Vaccine Vial Monitor
PDV	No longer tracked
EPI	Expanded Program on Immunisation
AFP	Paralysie Flasque Aigue [Acute Flaccid Paralysis]
PM	Minimum package
PNA	Pharmacie Nationale d'Approvisionnement [National Provisioning Pharmacy]
MISPCL	Plan Départemental de Développement Sanitaire [National Health Development Plan]
PNLP	National Program to Combat Malaria
PNT	National Program to Combat Tuberculosis
PPS	Point de Prestation de Services [Services Delivery Point]
HIPC	Highly Indebted Poor Countries
PRA	Pharmacie Nationale d'Approvisionnement [Regional Provisioning Pharmacy]
PRONALIN	Programme National de Lutte Contre les Infections Nosocomiales [National Program to
	Combat Nosocomial Infections]
РТА	Annual work plan
WPV	Wild Polio Virus
RED	Reach Every District
NRA	National Regulatory Authority
HSS	Health system reinforcement
ADS	Seringue Autobloquante [AD (non-reusable) Syringe]
SASDE	Stratégie Accélérée pour la Survie et le Développement de L'enfant [Accelerated
	Strategy for Child Survival and Development]
SD	Seringue de dilution [Dilution Syringe]
IDRM	Integrated Disease Surveillance and Response
SNEIPS	National Health Education and Information Service
TNM	Neonatal and Maternal Tetanus
TPIn	Intermittent Preventive Treatment for Infants
тт	Toxine Tétanique [Tetanic Toxoid]
UNICEF	UNICEF : United Nations Children's Fund
USAID	United States Agency for International Development
YFV	Vaccin Anti Amaril (against Yellow Fever)
MV	Vaccin Anti Rougeoleux [Measles Vaccine]
VAT	Vaccin Antitétanique [Anti-Tetanus Vaccine]
OPV	Oral Polio Vaccine
VVM	Vaccine vial monitor

List of Tables

Table I: Estimate of storage capacity needs for 2012 to 2013 at central level
Table II: Vaccination timetable in effect in Senegal
Table III: Performance indicators, targeted disease surveillance 2006 to 2009
Table IV: Evolution of risk indicators or protection against MNT from 2006 to 2009
Table V: Evolution of risk indicators or protection against MNT from 2006 to 2009
Table V: Summary of situation analysis
Table VI: Strategic approaches and action items
Table VII: Implementation Plan
Table VIII: Vaccine and supplies forecast for routine vaccinations
Table IX: Vaccine and supplies forecast for vaccination campaigns
Table X: Total EPI costs by type in 2010
Table XII: Division of recurring costs 2010
Table XIII: Breakdown of funding gaps including assured and likely funding
Table XIII: CMYP Follow-up indicators

List of Figures

Figure 1: DPM organizational chart and location of EPI

Figure 2: Change in loss rate for antigens from 2001 to 2009

Figure 3: Change in number of AEFI cases (major and minor) recorded from 2001 to 2009

Figure 4: Change in the punctuality and completeness of data from 2001 to 2009

Figure 5: Change in vaccination coverage in Senegal 2001-2009

Figure 6: Change in drop-out rate for DTC1(Penta1)/DTC3(Penta3) from 2001 to 2009

Figure 7: Distribution of districts based on DTC3 performance from 2001 to 2009

Figure 8: Immunisation coverage change and the proportion of zero dose children in Senegal according based on surveys

Figure 9: Development of suspected cases and deaths connected to measles 2001 to 2009

Figure 10: Change in VAT2 coverage for pregnant women and recording of MNT from 2001 to 2009

Figure 11: Number of cases and proportion of HIB within bacterial meningitis cases at the Albert Royer hospital in Dakar from 2002 to 2008

Figure 12: 2010 cost structure

Figure 13: 2010 funding profile

Figure 14: Breakdown of cost in function to vaccination strategy

Figure 15: Breakdown in relation to expense stations

Figure 16: 2012-2016 funding profile

Figure 17: Evolution of vaccine co-funding

Figure 18: Projection of assured and likely funding for 2012 to 2016

SUMMARY:

MINISTRY OF PUBLIC HEALTH AND PREVENTION	1
LIST OF ABBREVIATIONS	3
I INTRODUCTION	10
II CONTEXT	11
II.1 GENERALITIES	11
II. 2 HEALTH DOCUMENTS AND POLICIES	13
II.2.1 DPES 2011-2015	. 13
II.2.2 PNDS 2009-2018	. 14
II.2.3 NATIONAL IMMUNISATION POLICY	. 15
II.2.2 THE HEALTHCARE SYSTEM	. 16
1.3.1 System organisation	16
II.2.2.2 Health System Strengthening	17
III SITUATION ANALYSIS	18
III.1 PROGRAM ORGANISATION AND MANAGEMENT	18
III.1.1 Planning	. 18
III.1.2 Coordination	. 19
III.1.3 Supervision	. 19
III.2.1 Estimates of vaccines and supplies needed	20
III.2.2 Conservation of vaccines	20
III.2.3 Lise of the vaccines	21
III 2 COLD CHAIN LOGISTICS AND TRANSPORT	22
III 2 1 Cold Chain	22
III 2 2 Logistics on wheels	23
	. 23
	23
III.4 1 Initial training	24
III.4.1 Initial training	. 24
	. 25
	23
	27
III.7 SURVEILLANCE OF DISEASES AND FOLLOW-OP	20
	29
	30
	32
	33
III.11.1 Vaccination coverage	. 34
III.11.2 Struggie against the target alseases of EPI	. 3/
III.11.2.1 Polio Eradication	37
III 11 2 3 Flimination of Maternal and Neonatal Tetanus	28
III.11.2.2 Control of vellow fever	39
III.11.2.5 Bacterial Hib meningitis	39
IV. VISION AND PRIORITIES	44
V. OBJECTIVES AND STRATEGIC ORIENTATION AND CALLS TO ACTION	44
	11
V. 2. STRATEGIC AXES AND ACTION ITEMS	. 44
VI. PLAN FOR IMPLEMENTATION	50
VII. ANALYSIS OF COSTS AND FINANCING	56
VII.1 CURRENT SITUATION	
VII.1.2 DISTRIBUTION AND PROFILE OF EPI FINANCING IN 2010	. 60
VII.2 EVOLUTION	. 60
VII.2.1. EVOLUTION OF DIFFERENT CATEGORIES OF COSTS	. 60
VII.2.2 PLAN EVOLUTION AND FUNDING.	62

VII.3 ANALYSIS AND STRATEGIES FOR GAP REDUCTION	67
VII. FOLLOW-UP-EVALUATION PLAN	69
ANNEXES	.72

I INTRODUCTION

Vaccinations have occupied a very important place in Senegal's national health policy since the adoption of primary health services with the integration of expandecd program for immunisation (EPI) for vaccine preventable diseases.

Senegal became involved in 2000 with relaunching EPI following a difficult period marked by reduced immunisation coverage and the resurgence of diseases such as measles. Following the EPI review of 2000 and the creation of the strategic plans for 2001-2005 and 2007-2011, a certain number of actions and measures were taken, including:

- Strengthening the Program's coordination at the central level by creating the Immunisation Division that is housed within the Department of Medical Prevention;
- Creation of a national coordination committee for EPI (called "ICC") that regroups the Ministry of Health and its partners;
- Inclusion of, and increases to, a budget line item devoted to the purchase of vaccines and supplies which has improved vaccine availability;
- Improvements to logistics on wheels and the cold chain;
- Strengthening health care personnel management capacities at all levels;
- Strengthening vaccination-related activities and injection safety, with GAVI's support;
- Regular monitoring of EPI progress.

This commitment has translated into clearly improved management of the program at all levels, even though there are still challenges left to be overcome. The following results may be emphasized:

- An increase in and stabilization of immunisation coverage
- Efficient and competent management of all immunisations at all levels
- An efficient system of surveillance and immunisation safety
- Allocation of adequate financial resources along with access to them so as to ensure ongoing funding for the national immunisation program.

The majority of constraints and obstacles preventing desired results with regard to immunisations are linked to the health system. Strengthening this system is crucial to guaranteeing long-term success for EPI.

In 2010, an external review of EPI was implemented, at the request of the Ministry of Health, due to a noticeable drop in the program's successes after 2008.

The main conclusions and recommendations of this external review have been integrated into the CYMP.

In April 2005, the 58th World Health Assembly adopted a project called "Immunising the World: Vision and Strategy" with resolution WHA 53.12 which recognizes immunisations as an important factor in promoting health among children. This new vision for immunisation throughout the world (GIVS) is fully in line with the strategy to reduce poverty, one crucial part of which is the health component. Additional resources taken from the PPTE initiative will be focused on targeting the most vulnerable groups to attain OMDs.

The implementation of the health policy has allowed for significant advances such as the reduction of the infant-juvenile mortality rate, which decreased from 139% to 121% between EDS III (1997) and EDS IV (2005). The EPI has strongly contributed to this reduction which was affected by the implementation of accelerated strategies, combating, in particular, diseases such as polio, measles, and also by the introduction of new vaccines (Hepatitis B and Hib).

The current strategic EPI plan and monitoring, which takes the position outlined above, shows the solidifying of a national political will and partner participation. It defines the major axes of intervention for the 2012-2016 time period so as to leverage synergy with other maternal and child health programs targeted at significantly reducing the morbidity levels and mortality linked to preventable diseases through immunisation, improved health and improved quality of life for the population in general.

II CONTEXT

II.1 GENERALITIES

11

Located in the western region of the African continent (between 12.5 et 16.5 degrees latitude north), Senegal covers 196,722 km², bordered to the north by Mauritania, to the east by Mali, to the south by Guinea as well as Guinea Bissau. The country is divided into regions, 45 departments, 121 arrondissments, 113 communes, 46 arrondissement communes and 370 rural communities containing villages. It has a Sudano-Sahelian climate, with a dry season extending From November to June and a rainy season From June to October. The annual rainfall exceeds 300 mm in the north of the country, which is semi-desert, and 1200 mm in the south. The 2011 population is estimated at 12,862,587 with an annual growth rate of 2.7 % (RGPH 2002). The birth rate is 39% (EDS IV) and the synthetic fertility rate index is estimated at 5.3 children per woman. Senegal has the highest urbanisation rate in black Africa (DPS 2005). The population is young with around 50% being younger than 16 years old. Children age 0 to 5 represent 19.4% of the total population.

Poverty is considered in Senegal to be related to the lack of income, food, clothing, decent housing, and access to education, healthcare and potable water. The empirical approach for this definition of poverty translates to a basket of food and non-food goods that are indispensable to each individual, or group of individuals, so that they may exist in decent conditions. The level of poverty, therefore, indicates the proportion of individuals who do not have access to this defined minimum basket.

According to the results of the study on poverty, Chronicle 16, in 2008-2009, the poverty profile in Senegal revealed that 6 out of 10 individuals are either considered to be living in poverty or vulnerable. Out of the 6 individuals who are classified as living at the poverty level, 4 are poor and 2 are vulnerable to a shock (economic, health and ecological) which can rapidly cause them to descend into poverty. In Senegal, 54% of those living in poverty reside in rural areas, 29% in Dakar and its surrounding areas, and 17% are found in other cities. The conditions leading to vulnerability are especially present in rural areas where 94% of those considered vulnerable reside, in contrast to the only 4% found in other cities, and the 2% found in Dakar. The principal health indicators of EDS IV, noted in 2005, show that progress has been made but that child and maternal health remains a primary concern.

 Maternal mortality rate: 434 per 100,000 live births (309 in the urban areas versus 472 in the rural areas)

- Infant mortality rate: 61% (52 in the urban areas versus 82 in rural areas);
- Rate of infant and juvenile mortality: 121% (91 in the urban areas versus 160 in the rural areas)

It emerges From these indicators that the rural areas, which are poor and often isolated, pay the heaviest tribute in morbidity and mortality among the groups that are the most vulnerable, women and infants.

II. 2 HEALTH DOCUMENTS AND POLICIES

II.2.1 DPES 2011-2015

Toward the goal of inclusiveness, the country of Senegal has, since the middle of the 1990s, implemented policies, strategies and programs that have a common and fundamental objective to efficiently combat poverty and encourage an economic resurgence. The decade of the 2000s—and in particular, since the year 2003—has been marked by implementation of the Poverty Reduction Strategy Document [Document de Stratégie de Réduction de la Pauvreté] (DSRP-I, 2003-2005), which was reactivated in 2006 to apply to the 2006-2010 period (DSRP-II). The DSRP serves as a framework and reference with regard to economic and social policy, as well as for growth and the reduction of poverty within the general context of the pursuit of the Millennium Development Goals (MDG).

For the five-year period from 2011-2015, all participants have agreed on the necessity of defining a national strategy that is marked by both realism and innovation: the Economic and Social Policy Document [Document de Politique Economique et Sociale - (DPES)]. The current strategy, a unique interventionist approach involving all development participants, subscribes to a long-term vision that is against social exclusion and which calls upon the policies of the central and local governments to be engaged in the medium-term goal of accomplishing the MDGs by 2015. This document also serves as a reference point for Senegal's social and economic policy and analyses the fundamental situation using the diagnostic report DSRP-II. This document defines vision and strategic orientation and the most important action items, as well as describing the mechanisms by which the document's goals will be implemented.

The sub-sector of healthcare experienced positive results between 2006 and 2007. However, certain indicators fluctuated negatively, specifically those related to the MDGs. Therefore, to better address maternal and child health issues and the fight against the most threatening diseases, the following goals and policies have been targeted for the 2011- 2015 period so as to ensure success within the health care services sector:

- Reduce the rate of maternal and infant-juvenile morbidity and mortality through actions and measures that encourage childbirth in healthcare centres staffed by qualified personnel, along with increased attendance at postnatal visits, and promotion of childhood survival through vaccination and better nutrition;
- Increase healthcare sector's success with regard to the prevention and the combat of the most deadly diseases by encouraging screening and strengthening the system of medical monitoring;
- Long-term strengthening of the healthcare system by ensuring the maintenance and replacement of equipment as well as improved quality of care;
- Strengthening of governmental oversight over the healthcare sector by ensuring efficiency as well as appropriate healthcare-related purchases along with more financial involvement in health matters at the locale (collective) level, and through developing a community-based approach and cross-sector partnerships.

II.2.2 PNDS 2009-2018

The items described in the DPES below from the DSRPII have served as the basis for defining the 2009-2018 National Health Development Plan [Plan National de Développement Sanitaire]. This Plan is founded on a vision of Senegal where all individuals, all households, and all collectives benefit from universal access to high-quality educational, preventive, curative and rehabilitative health services, without exclusion and where all are guaranteed a productive level of economic and social health. This plan targets the attainment of national and international objectives with regard to healthcare, and, in particular, the DPES and OMG goals. Intervention strategies for the next ten years will be specifically focused on attaining the wellbeing of Senegalese families by improving the quality of services offered. This major focus will be achieved through a health system accessible to all, with local collectives and representatives who will be responsible and accountable, an organized population which participates and monitors, and technical and financial partners who are in tune with national priorities. The guiding principles for the implementation of PNDS 2009-2018 are participation, cross-sector partnerships, transparency, solidarity, equity and gender.

The strategic orientation for PNDS II is described in the following points:

- Acceleration of the struggle against maternal, neonatal, and infant mortality and morbidity
- Improvement of health education
- Better disease treatment
- Increased integrated surveillance and combat of diseases as well as follow-up care
- Development of human resources
- Strengthening of Infrastructures, Equipment and Maintenance,
- Increased availability of medication and medi-surgical products,
- Strengthening the system of information and research within the healthcare system
- Promotion of results-oriented management,
- Strengthening the sector's capacities with regard to administrative and financial planning management,
- Reinforcement of disease risk coverage with emphasis on vulnerable groups
- Integration of new vaccines.

II.2.3 NATIONAL IMMUNISATION POLICY

The focus of the CMYP informs that of the PNDS. The EPI, begun in Senegal in 1979, envisages using vaccination for the reduction of morbidity and mortality connected to preventable target diseases. Routine vaccination has been made a fixed strategy, both advanced and mobile; all the antigens are to be administered to infants before their first birthday as well as pregnant women.

With the introduction of the pentavalent vaccine in 2005, nine antigens are offered through the EPI in all the country's localities. Particular attention is paid to the how vaccines are preserved, to the safety of the injections by using one-time injection material, and to the management of solid human waste. The major strategic directions of EPI are:

- Strengthening the immunisation system;
- Improvement of management capacities at all levels;
- Sufficient supplies of high-quality vaccines;
- Maintenance and updating of logistics;
- Reinforcement of communication and social mobilisation for EPI;
- Adequate and long-term financing for EPI.

II.2.2 THE HEALTHCARE SYSTEM

1.3.1 System organisation

Senegal's healthcare system is organized into a pyramid-style structure with three levels: the central and intermediate levels are made up of Medical and Outlying Regions called health districts. The State envisages a reform of the healthcare system and the work to develop that has been assigned to the DREAT, which is currently being finalized.

Central level

In addition to the Ministry, the central level includes the Secretary General and related Departments and Services. Three specific issues cause difficulties within the way services function at the institutional level: (i) the large number of services included, (ii) the overlapping responsibilities of central services sharing the same mission, (iii) the lack of precision in missions due to the absence of directives for implementation.

Intermediary level: Medical Region (MR)

Senegal has 14 medical regions. Medical regions, which correspond in coverage area to that of the country's administrative regions, ensure coordination, supervision, and inspection and monitoring of the public and private healthcare structures within the region. The medical regions organize technical cooperation between all regional healthcare entities and assist them in their administrative, management and planning tasks. Yet, the Medical Regions have difficulties playing this role due to insufficient capacity, human resource and logistical issues.

Peripheral level: Health District (HD)

Senegal has 75 health districts which provide a healthcare unit that near to the population. The district is the operational unit at the outermost boundaries of the healthcare pyramid. At this level, medicine is practiced in four-dimensional fashion: curative, preventive, social and educational. The district is made up of one or more health centres and encompasses a network of healthcare stations which, in turn, supervise healthcare needs and rural pregnancies. The districts, as with the medical regions, lack capacity. This situation explains the weakness of the executive teams.

II.2.2.2 Health System Strengthening

Strengthening the healthcare system in Senegal means increasing the use of healthcare services, as well as increasing the number of quality services offered, including immunisations. This is in line with reaching the goals needed to implement the second phase of the National Health Development Plan [Programme National de Développement Sanitaire - PNDS] - 2004-2008, the Midterm Sector Expenditures (FMSE) [Cadre de Dépenses Sectorielles à Moyen Terme – CDSMT] - 2008-2010, and the strategic plan for child monitoring strategy (2008-2015). The HSS goal is to reinforce the healthcare system's capacities so as to improve mother and child healthcare program success. The principle objectives targeted by strengthening the system are:

- Reinforce health agents' expertise of program management as it applies to maternal, infant and child health
- 2. Increase district operational capacity
- 3. Improve the follow-up/evaluation system applied to healthcare programs

III SITUATION ANALYSIS

III.1 PROGRAM ORGANISATION AND MANAGEMENT

On the institutional level, EPI organisation and management have profited from the restructuring of the Ministry of Health in 2005, including the creation of a Department for Medical Prevention, which houses the Division of Immunisation and the Division of Epidemiological Surveillance. This restructuring has been accompanied by reinforcement of human resources centrally; it has allowed significant improvement of program management. However, the program still lacks independence, and, in particular, financial independence.

Figure 1: DPM organizational chart and location of EPI

III.1.1 Planning

The country has defined a complete multi-year plan for EPI for 2007/2011 with scheduled annual updates. In 2010, 83% of the districts visited for the review had an annual work plan (AWP) for immunisation activities.

III.1.2 Coordination

The coordination of immunisation activities is performed at all levels:

- The ICC meeting is planned to bring all partners together, and is presided over by the Ministry of Health, and scheduled quarterly. The purpose of this meeting is to validate the decisions proposed by the technical ICC and ensure that resources are mobilized. However, the ICC does not actually meet regularly.
- The technical ICC that brings together technical partners and DPM staff does meet regularly. It also does not include all the involved parties.
- The various status, monitoring and coordination meetings at the regional medical and district levels are not held on a regular basis

III.1.3 Supervision

Supervisory meetings are to be scheduled every six months at the central level to oversee the regions, as well as similar meetings for the regions to oversee the districts to be scheduled every three 3 months, and the districts to oversee the healthcare stations, to be scheduled every month. However, these meetings do not regularly take place.

In 92% of the districts, a supervisory grid was available. Only 42% of the districts visited had a supervisory plan for 2010.

Supervision that takes place is not always documented. Written feedback to healthcare stations was only found in 17% of the districts visited and supervisory logs at healthcare stations were rarely found.

III.2 PROVISION AND CONSERVATION OF VACCINES AND SUPPLIES

III.2.1 Estimates of vaccines and supplies needed

Since 2001 a plan for providing vaccines and supplies has been defined every year so that vaccines are always available at the central and intermediate levels. The standard procedures for receiving vaccinations and supplies, and for transport from air and sea to the central warehouse, are generally respected.

The method of estimating vaccine needs is based on the target population at each level. Due to incorrect forecasts, certain districts and vaccinations units adjust their forecasted needs using past consumption.

How the supply chain works at each level is as follows:

- The central level is supplied every 6 months
- The regional level is supplied every 6 months
- The district level is supplied every 2 months
- The health stations are supplied every month.

Due to weak storage capacity, certain regions and districts may increase their supply frequency.

Important progress has been made in maintaining vaccine supply levels for the central, regional, and district levels. Vaccine availability rates at all levels have clearly improved. Except for the interruption in access to antigens noted in 2009 after 2008 supply chain non-mobilization for immunisations and supplies, the country's supply has been regularly maintained. In 2010, the line was fully available as of the first quarter and no interruptions occurred.

III.2.2 Conservation of vaccines

Those responsible for the vaccines preserve them in accordance with WHO recommendations. However, as at the central level, capacity needs to be strengthened, in

particular with regard to the condition of ice packs when distribution and vaccine agitation tests are taking place.

The cold rooms are not equipped with a system that automatically records temperature, and, as a result, recordings are taken manually.

At the district and regional warehouse levels, only 50% of those who are responsible for doing so perform a manual check of the twice-a-day manual temperature check, and the archiving of records needs to be improved (external review 2010). The majority of stations perform daily manual temperature checks which are not systematically archived. These records are practically never reviewed at the end of the month to evaluate the quality of the inventory. A monthly physical inventory of vaccines and supplies is rarely performed and/or documented.

Currently, according to national regulation, it is forbidden to freeze vaccinations at the peripheral or intermediary levels, no matter how they were conserved elsewhere. The implementation of automatic temperature recording for all warehouses throughout the country has been scheduled to take place before the end of 2011.

III.2.3 Use of the vaccines

As shown in Figure 2, there has been a steady decrease in the vaccine loss rate since 2001. The vaccine loss rates have been well controlled for liquid vaccines (less than 10%) and acceptable for vaccines (<25%).

Figure 2: Change in loss rate for antigens from 2001 to 2009

III.2 COLD CHAIN LOGISTICS AND TRANSPORT

III.2.1 Cold Chain

At the central level, three positive cold rooms with a net total capacity of 31.25 m³ and one negative room with 6.25 m³ are available. All cold rooms are equipped with two cold generators as required. There is a backup generator group of 107 KVA. With the introduction of the pneumonia vaccine, the requirement at the central level will be 35.9 m³ positive. With the introduction of the rotavirus vaccine in 2013, the requirement at the central level will be 48.8 m³ positive. The gap will be 4.67 m³ in 2012, 17.56 m³ in 2013, and 21.6 m³ in 2016. The rehabilitation plan is scheduled to implement three cold rooms of 12,5 m³ net capacity each.

At the regional level, the implementation of 17 TCW 3000 refrigerators in 2010 allowed for requirements to be met through 2016.

At the district level, there is need over the next five years for 79 TCW 3000 refrigerators if the replacement of amortized equipment is addressed. However, there are 13 districts which do not have access to functional CDF equipment. This gap could largely be taken care of with the acquisitions forecast in the HSS and by UNICEF (13 TCW 2000) in 2011.

 At the vaccination unit level, after the acquisition of 350 RCW50 refrigerators in 2011, through the support of various partners (LUXDEV, UNICEF, GAVI), inventory capacity will be sufficient through 2016. However, it must be noted that progressive replacement of amortized refrigerators (638 of them) must take place between 2011 and 2016

	Required capacity		Available capacity		Additional capacity	
APPENDIX	+2°C to		+2°C to			
	+8°C	-20°C	+8°C	-20°C	+2°C to +8°C	-20°C
2012 +		3,422	31,250	6,250		-2,828
Pneumonia	35,924				4,674	
2013 + Rota	48,817	3,525	31,250	6,250	17,567	-2,725
2014	50,135	3,620	31,250	6,250	18,885	-2,630
2015	51,489	3,718	31,250	6,250	20,239	-2,532
2016	52,879	3,818	31,250	6,250	21,629	-2,432

Table I: Estimate of storage capacity needs for 2012 to 2013 at central level

III.2. 2 Logistics on wheels

The DPM has 5 vehicles available, 4 of which are more than five years old. The transport of vaccines and supplies was ensured by DPM which rented trucks for this purpose. Since January 2011, an agreement links DPM and PNA, which is now charged with the transport of vaccines and supplies from the national level to the regions. The 2010 inventory showed that 28 districts did not have access to a vehicle and that 700 vaccination units were without motorcycles. In 2011, 24 vehicles and 160 motorcycles were acquired through partner support (UNICEF 10 vehicles and 100 motorcycles, GAVI HSS 2 vehicles and 60 motorcycles, Luxdev 12 vehicles), which contributed toward reducing the gap.

III.3 COMMUNICATION

A strategic EPI communication plan was drafted for 2003-2008; tools for integrating vaccinations were developed to communicate information about child health: displays, advice cards, aide mémoire, etc.

There are social mobilization committees at all levels with good vaccination participation from the public. However, some areas that need improvement have been noted:

- Lack of human resources and equipment at the DPM's Communication Bureau
- Unsatisfactory collaboration between DPM and SNEIPS
- Unsatisfactory support and other communication materials for the routine EPI
- Social mobilization for special events, specifically mass vaccination campaigns, to the detriment of routine vaccinations
- Weakness in the evaluation of communication activities for the EPI

However, there does exist a dense network of basic community organisations (BCO) and contacts that promote health promotional activities by interpersonal communication and by social mobilisation. In addition, public, private, and community radio stations are well distributed throughout the entire country.

The introduction of the pentavalent vaccine was an opportunity which enabled communication plans to be revised and to conduct communication activities promoting the EPI intensively throughout the entire country.

III.4 REINFORCEMENT OF QUALIFICATIONS

III.4.1 Initial training

Instructors at the Faculty of Medicine and at the National School of Health Development have received training in EPI with the goal of integrating it into the initial training of doctors, nurses, and midwives. However, the introduction of the EPI into the curricula has not yet taken place. This is why within the HSS there is support for training instructors and those graduating from training schools.

24

There is a national training centre that offers courses in hospital maintenance and which trains advanced technicians. Including maintenance of CDF and EPI equipment in their curricula will allow it to become a focus of the program.

III.4.2 Continuing education

The national EPI guide, which provides clear information about the way in which immunisation activities must be conducted throughout the country was developed at the national level and made available to the healthcare districts. This guide is currently being updated and will take into account new information about the introduction of new vaccines.

According to the external review of 2010, 58% of district service providers visited had benefited from formal EPI routine training during the last three years, and 17% of the MCDs from management training.

III.5 PROVIDING SERVICES

Routine vaccination at the point of service delivery is done via fixed, advanced, and mobile strategies. The hepatitis B vaccine was included in the EPI in 2004 and the vaccine against hæmophilus influenzae type B (Hib), in July 2005. The current immunisation schedule is set out in Table 2. There is no national directive about catch-up activities for children aged more than one year. This activity is the responsibility of the healthcare districts.

The country has organised several mass campaign against polio, yellow fever, tetanus, measles and meningitis (cf chapter III.12.2).

Table II: Vaccination timetable in effect in Senegal

Infants 0-11 months	Vaccines
• Birth	BCG, VPO 0
• 6 weeks	Pentavalent1, VPO1
• 10 weeks	Pentavalent 2, VPO2
• 14 weeks	Pentavalent 3, VPO3
• 9-11 months	Measles, yellow fever
Pregnant women	VAT
At first contact	VAT1
4 weeks later	VAT2
6 months later	VAT3
12 months later	VAT4
• 12 months	VAT5

The external review made the following observations possible:

- All the units vaccinate dependably at least one time per month, but advanced and mobile strategies are implemented in only 33% of the districts visited.
- Cartography exists in the majority of the healthcare districts, however, zones that are difficult to access only show up in 33% of cases.
- Specific plans to reach populations in difficult-to-access areas do not exist in 17% of the districts visited.
- An up-to-date self-monitoring performance curve was found in 36% of the units visited.
- A plan to locate those who slipped through the cracks (PDV) involving the community exists in most of the districts visited, even if no evaluations of these plans are available.
- Direct observations have shown good organisation of immunisation sessions at the stations visited. Some areas that need improvement have been noted at certain units (recapping needles, errors in record keeping, needle cutting, running out of vaccine during sessions, etc.).
- Lack of inter-personnel communication (IPC) during vaccination sessions has also been noted in all observations.

III.6 SAFETY OF INJECTIONS

The external review showed mastery of the vaccination technique by healthcare agents and also showed the use of vaccines with manufactures' diluents. The exclusive use of SAB and sharps boxes has been systematic since 2004. There has never been an issue with getting access to these products.

The national directives about disposal of sharps boxes are clear. All boxes must be incinerated according to a plan drafted at district level. Management of the sharps boxes is well-documented according to the records included with the monthly reports. During the mass campaigns, local companies and hospitals which have large capacity are called upon to help with sharps box incineration. During the review it was noted that there were distressed sharps boxes at certain structures. There is an estimated need of 46 incinerators at the national level per the 2010 inventory conducted for the Optimize project. UNICEF intends to build 20 incinerators before the end of 2011. While waiting to fill this remaining gap, the strategies currently in place will continue: to use hospital and industry incinerators.

According to the 2010 external EPI review, AEFI management tools are available at the unit level but rarely used (36% of visited units). The PDM is involved in surveillance of AEFI and in the collection of data that show such effects. It shares its information with the DLP which transmits it to the anti-poison centre responsible for the link between observed symptoms and immunisation. Against a background of routine immunisation, AEFI monitoring performance remained low despite some progress. All AEFI cases (major or minor) must be recorded. There has been a change (increase) in the number of cases of AEFI recorded; this uptick accelerated after the introduction of the pentavalent vaccine.

27

III.7 SURVEILLANCE OF DISEASES AND FOLLOW-UP

The healthcare district is at the core of the surveillance system and has specific surveillance focal points for which training is provided (83% of districts visited during the external review) through support of the national network of laboratories, regional and hospital focal points. In the districts visited during the review, all of the staff questioned knew the case definitions for PFA and measles, as well as sample collection procedures for stools and blood. In half of the districts visited, the focal points involve at least one visit per month for healthcare training. A warning surveillance system for paediatric meningitis was set up with the Albert Royer Children's Hospital Site. After the introduction of the vaccine against hemophilus influenzae type B infections (part of the pentavalent vaccine), this surveillance was reinforced by its extension to seven regional sites.

A weekly epidemiologic surveillance bulletin is regularly published and includes all diseases under surveillance. The surveillance results are generally satisfactory, with required performance levels being attainted for major indicators.

This system of surveillance for potentially epidemic diseases suffers from the weak diagnostic capacity of outside laboratories for the confirmation of bloody diarrhea, cholera, and cerebrospinal meningitis. The functioning of the national network of laboratories should help improve this situation.

Table III: Performance indicators, targeted disease surveillance 2006-2009

Indicators	2006	2007	2008	2009
Rate of non-polio AFP	2.8	4	3.9	3
Adequate stool samples (%)	90%	93%	93%	93%
Proportion of regions who have attained the	0.40/	0.1	050/	020/
standard of adequate stools and the rate of non-	84%	91	85%	92%
Proportion of districts with less than one suspected	82%	89%	94%	98%
case measles investigated with a blood sample				
Proportion of TNN cases that were investigated	100%	100%	100%	100%
Proportion of TNN cases that were subject to	100%	100%	100%	100%
follow-up				

III.8 DATA MANAGEMENT

Vaccination data is collected at the vaccination unit level from the TACOJO and transmitted to the District in a monthly report. Computer input using the data management template is done at the district level and transmitted to both the medical region and national levels. A bulletin containing past information is published monthly at the national level after the data has been summarized and analyzed.

As shown in Figure 4, the completeness of district reports has been 100% since 2001 but, on the negative side, they were submitted punctually less than 50% of the time in 2005. The breakdown of vaccinated children by gender is not analysed because information on gender is not taken into account by the survey tools currently being used.

Since June 2010, a strike of healthcare agents—which involves them withholding information—has been taking place.

Note: Dark green = timeliness and light green = level of completenessFigure 4: Change in the punctuality and completeness of data from 2001 to 2009

III.9 LESSONS LEARNED FROM THE INTRODUCTION OF NEW VACCINES

Having accepted GIVS, which dictates increasing the range of vaccines offered to protect against more diseases, Senegal successfully introduced into its routine EPI the Hepatitis B vaccine in 2004 and the vaccine for *Haemophilus influenzae* type b (Hib) in 2005, with the support of GAVI. These decisions had a significant effect on the involvement of healthcare authorities and on surveillance data. Senegal is committed to continuing to immunize after the end of funding provided by GAVI, and, to do so, has developed a funding plan to reach this objective. An evaluation of the introduction of the Hib vaccine shows the following:

- A detailed plan for the introduction of the vaccine was drafted. All the activities outlined in this plan were funded and implemented.
- The strategy was to introduce the vaccine to the entire country at the same time.
- Children who had begun their immunisation series with the DTC-Hep continued it with the penta. There was no system for catching up children who only received one or two doses of penta;

- There were no problems with inventory capacity because an inventory was performed to identify the gaps and to then fill them.
- To prevent the risk of the penta vaccine freezing, a new directive was made that forbade freezing all types of vaccines at the intermediary and peripheral levels. The implementation of automatic temperature recording for all warehouses throughout the country has been planned for before the end of 2011.
- Loss rates that had continually dropped since 2001 climbed after the introduction of penta in 2005. This can be explained by problems with the reporting system and also by the destruction of DTC-Hep inventory at the vaccination unit level.
- Before the vaccine was introduced, all the healthcare agents were trained. The training modules used combined knowledge of traditional vaccines, and surveillance and management principles covering all the areas that apply to EPI. This training was consolidated on the ground by training supervision. This supervision was an opportunity to support all EPI directives as well as surveillance.
- To market the new vaccines, new media materials were needed. This made the media campaign possible, and, increased the program's visibility with a particular focus on the new vaccines.
- The need to monitor the effects of the new vaccines allowed for AEFI surveillance to be relaunched for all antigens.
- All support materials were reviewed, revised and updated to integrate information about the new vaccines. There was a loss of data with regard to DTC and Hepatitis (HB) which were no longer counted in the new system which had adopted Penta1, Penta2, Penta3 to replace DTC- HB1, DTC- HB2, DTC- HB3.
- After the introduction, the partners lobbied the Political Authorities for a commitment to co-funding. This commitment allowed for further oversight of the purchasing process for vaccines and supplies and this process did see an increase.
- A slight drop in coverage was noted (penta3 /DTC3) as was an increase in drop-out rates for 2005. These situations are the result of a problem with data reporting. Children who completed their series with penta were reported as penta 1 instead of DTC2 or DTC3. This problem was quickly resolved with supervision.

 A significant decrease in cases of bacterial Hib meningitis was noted (see chapter III.12.2.5)

III.10 INTEGRATION OBSERVATIONS

Vitamin A has not yet been included in the routine EPI, although a national directive was written and distributed for this purpose. The principal reason for this situation is the unavailability of vitamin A at the immunisation units. Vitamin A is bought at the PNA by the districts and redistributed free of charge. The few districts that have implemented this integration are not supplying regular information to the central level due to the lack of a computer system and appropriate data management.

Setting up the CIME strategy in certain districts allowed effective integration of vaccination activities into other activities such as: the verification of nutritional status, treatment of diseases, vitamin A supplementation, and getting rid of parasites. Improvements to this program are underway.

The mass immunisation campaigns were often coupled with the distribution of vitamin A, MII, and getting rid of parasites.

From 2006 to 2009, Senegal conducted a feasibility study about intermittent preventive treatment for childhood malaria for those aged 0 to 1; this was coupled with the EPI in the districts of Velingara, Kedougou and Saraya, which are located in the southeast region of the country in a zone of stable malaria transmission. The results showed that integration with the TPIn allowed for the routine EPI to be strengthened and this served as the stimulus. Increased use of TPIn in the zones where transmission of malaria is intense to moderate lasts 6 months or more. The regions involved are Tambacounda, Kedougou, Kolda, Sedhiou and Ziguinchor. This effort was confirmed in the new strategic plan for combatting malaria (2011-2015).

Plans include transporting and distributing vaccines supplies to the PNA-PRA circuit. This circuit is the one used to distribute medications and crucial generic products and those for other programs. An Optimize pilot study is underway in the region of Saint Louis. If the results

of this study are conclusive, the approach will be progressively implemented throughout the country.

Senegal adopted a regional surveillance strategy for addressing disease and follow-up (SIMR) in an integrated way. Within the Ministry of Health and Prevention, surveillance is within the same department as EPI. The diseases that are the subject to surveillance are the following:

- The target diseases for EPI, specifically those that are targeted for eradication elimination
- Diseases with epidemic potential: cholera, meningitis, shigellosis, flu, rabies
- AEFIs.

USAID community health project integration with community-based surveillance is planned for PFA, measles, yellow fever and neonatal tetanus. This will be within the package of activities that are part of the agreement between USAID and the the NGO consortium. Additional funding by UNICEF will contribute to covering the entire country.

With regard to follow-up, meetings are jointly organized by the different programs (EPI, PNLP, PNT), each quarter between the teams at the central level and team members from the districts and regions. The goal is to review the activities that took place during a given period. The targeted goal was to maximize the resources used but also to better plan activities, allowing districts and regions access to global, integrated plans of action.

The Ministry of Health has an operational plan for scaling high-impact interventions to the national level to reduce maternal, infant and child mortality. These interventions were selected on the basis of scientific evidence and by targeting mothers, newborns, and children. Their inclusion together in a minimum package (MP) as well as in a complete package (CP) is to offer a group of care offerings to mothers, newborns and children in an integrated way. This is the case as well as for the household/community level, primary healthcare entities which provide regular services to the population, and for entities that provide individual clinical services. The EPI is a intervention within the minimum package and is a draw for other parts of the package.

III.11 RESULTS OBTAINED BY THE PROGRAM

33

III.11.1 Vaccination coverage

Significantly improved coverage for all antigens has been observed since 2001. The change in coverage can be broken down into 3 periods:

- From 2001 to 2004 with a significant increase in coverage
- From 2004 to 2007 with a less-pronounced increase
- From 2007 to 2009 with a dip in coverage in 2008.

DTC3 coverage (penta 3 since 2005) has increased from 45% in 2001 to 87% in 2009; that of MCV went from 42% in 2001 to 80 % in 2009. There was an observable constant increase in districts having a DTC3/Penta 3 cover rate above 80%. This number went from 4% to 2001 to 71% in 2009. During the same time period, the proportion of districts with coverage less than 50% strongly declined, dropping to 60% in 2001 from 0% since 2005 (figure 5). The Penta1/Penta3 loss rate remained at acceptable levels despite a slight increase between 2005 and 2006, due to a reporting problem linked to the introduction of penta and the withdrawal of the DTC- Hep vaccine in the middle of the year. The differences in coverage between YFV and the MCV in 2004 and in 2009 were due to an interruption in the supply of the yellow fever and measles vaccines. The DTC1 (Penta1) / DTC3(Penta3) drop-out rates have seen a constant drop since 2001 and are currently below the threshold of 10%. In 2005 this rate increased following the introduction of penta due to a reporting problem this vaccine and DTC. The 2010 data was not fully collected due to a strike that invovled holding back health-related information.

Even if the lack of information about confidence intervals does not allow for a true comparison between survey data, a stable rise in coverage during the period can be noted. These surveys also show a decrease in the proportion of "zero dose" children (those who have received no vaccines).

COUVERTURES VACCINALES DE 2001 à 2009

Figure 5: Change in vaccination coverage in Senegal 2001- 2009

Figure 6: Change in drop-out rate for DTC1(Penta1)/DTC3(Penta3) from 2001 to 2009

Figure 7: Distribution of districts based on DTC3 performance from 2001 to 2009

Figure 8: Immunisation coverage change and the proportion of zero dose children in Senegal according based on surveys

III.11.2 Struggle against the target diseases of EPI

III.11.2.1 Polio Eradication

The last case of polio in Senegal was recorded in 1998. Senegal was declared free of WPV circulation in 2004. These results were achieved due to a steady increase in the coverage of OPV3 to more than 80%, active surveillance of PFA leading to attaining the 2 major indicators on a yearly basis (PFA non-polio rate and proportion of adequate samples), and the organisation between 1997 and 2005 of several editions of high-quality NVD with a coverage rate of over 99%. However, following a decrease in performance noted in 2007 and the intense circulation of WPV in Western Africa, the country was subject to importation of WPV and 18 cases were recorded in the country between January and April 2010; this was the impetus for the country to organize six rounds of polio NVD.

III.11.2.2 The struggle against measles

The number of measles cases was estimated at 25,000 in 2001, with close to 1,000 deaths. Organising the immunisation catch-up campaign for the target age bracket of 9 months to 14 years in January 2003 (95% coverage) and the increase of routine coverage at the VAR, which rose from 42% in 2001 to 80% in 2009, has produced a significant decrease in the number of cases of measles. The surveillance of measles showed that the number of confirmed cases went from 31 in 2004 to 0 (zero) in 2005. However, in June 2009 the country had an epidemic with 906 cases of measles (confirmed by laboratory or epidemiological link). A follow-up campaign was organised in 47 at-risk districts in March 2010 and another follow-up at the national level was organized for March of the same year.

Figure 9: Development of suspected cases and deaths connected to measles 2001 to 2009

III.11.2.3 Elimination of Maternal and Neonatal Tetanus

The number of cases of neonatal tetanus decreased from 33 to 16 between 2003 and 2009 and, during the same period, the number of districts with high risk for MNT decreased from 14 to 2. Since 2008, no district has reported more than one case per 1,000 live births. These results were attained due to improved childbirth conditions, improved routine coverage, and the organisation of FAR immunisation campaigns in high-risk districts.

Figure 10: Change in VAT2 coverage for pregnant women and recording of MNT from 2001 to 2009

Table 4: Evolution of risk indicators or protection against MNT from 2006 to 2009

Indicators	2006	2007	2008	2009
% TT2+ (pregnant women):	86%	78%	81%	78%
PNC use rate	84%	74%	39%	81%
Assisted childbirth rate	59%	56%	52%	67%
DTC 3 coverage	89%	94%	88%	87%
Proportion of districts having reached the				
goal of less than one case of MNT per	100%	100%	100%	100%
1,000 live births				

Source, Ministry of Health and Prevention administrative data

III.11.2.2 Control of yellow fever

Since 2006, Senegal has not recorded an indigenous case of yellow fever and the routine coverage has increased from 33% in 2001 to 70% in 2010. All the districts organized preventive campaigns or follow-up campaigns between 2002 and 2007.

III.11.2.5 Bacterial Hib meningitis

The number of bacterial Hib meningitis cases has continued to decrease since the introduction of the vaccine in 2005 with 1 single case in 2008, as shown in Figure 11. At the same time, the proportion of bacterial Hib meningitis among bacterial meningitis cases has also decreased. Incidents in infants aged less than 1 year has decreased from 21.5 cases per 100,000 to 1.4 from 2003 to 2007.

Figure 11: Number of cases and proportion of HIB within bacterial meningitis cases at the Albert Royer hospital in Dakar from 2002 to 2008

Table V: Summary of situation analysis

Component	Strengths	Weaknesses	Opportunities	Threats
Organisation	Meetings held by ICC's Policy and	The lack of management autonomy	Reforms underway at	Repeated
and	technical committee	Non-involvement by NGOs and	the DREAT level to	holding back
management	Lobbying role and mobilization of	organization of the civil company at	strengthen EPI's	of data for
of the	resources by ICC policy and	technical ICC	institutional position	follow-up
program	Holding of quarterly data	Limited collaboration between EPI and	HSS to improve	evaluation
	monitoring meetings	other health programs	collaboration between	
		BRISE non-functional in the majority of	different programs	
		regions	Introduction of new	
			vaccines	
Logistics,	Computerized management of	Insufficient inventory capacity for	Development partners	Interruptions
management	stocks	vaccines at regional and district levels	disposed to investing in	in electricity
of vaccines	Sufficient inventory capacity at the	Aging cold chain in majority of units	logistical improvements	supply
and supplies,	national level and healthcare	Poor use of management tools	and support for training	
infection	stations	Absence of system monitoring stability	and maintenance	
safety	Five-year rehabilitation and	of temperature.	Mobile warehouse pilot	
	logistics plan	Insufficient logistical transport	project (Optimize)	
	Strengthening human resources at	(motorcycles, supervision vehicles)	HSS	
	the logistical level	Lack of equipment maintenance plan		
	Agreement with the PNA to	Low availability of emergency generators		
	transport and distribute vaccines	at peripheral level		
	Systematic use of of SAB, SD, and	Insufficient incinerator coverage		
	BS in all PPS	Slowness in purchasing procedures as		
	Good mastery of vaccination	related to State's budget		
	techniques			
Communicati	Knowledge of vaccination and EPI	The absence of a national	Variety and diversity of	
on and social	target diseases by the population	communication plan for EPI	the media network	
mobilisation	Participation by the population in	Weak approach by the DPM's Bureau of	Possibility of	
	immunisations.	Communication to EPI communication	integration with the	
	Existence of structures responsible	Unsatisfactory collaboration between	other health programs	
	for communication at all levels.	DPM and SNEIPS	Existence of relay	
	Support from partners	Lack of evaluation of EPI communication	network and	
	Access to community networks	activities	community players	
		Unsatisfactory support and other	Existence of community	
		communication materials for the routine	involvement in	
		EPI	USAID/SENEGAL	
		Social mobilization only during	healthcare program	
		campaigns		

Component	Strengths	Weaknesses	Opportunities	Threats
Reinforceme	Existence of national guide on EPI	Insufficient initial training and longevity	Existence of other	
nt of	EPI training modules available	of personnel at the district level	programs resources	
qualifications	Existence of a pool of doctors	Irregularity of supervision training at all	that can be mobilized	
	trained in applied vaccinology and	levels	for integrated	
	management (EPIVAC)	Insufficient documentation about	supervision at the	
	Training of instructors and	supervisions carried out	district level (malaria,	
	paediatrics in applied vaccinology		tuberculosis, HIV, etc.)	
			Project to update	
			training curricula for	
			HSS	
Providing	Vaccination provided regularly, at	Planning sessions without community	Possibility of	
health	least one time per month in all	input	benefitting from SVAs	
services	units	Insufficient and irregular advanced and	to improve planning	
	Vaccination sessions well organized	mobile strategies	and organization of	
	Existence of relaunch plan for PDV	At times, interruption in supply of	services	
	with the community	antigens at service level due to poor	Good PNC coverage	
	Campaigns well-organized	planning	Organisation of JSE to	
	Good experience introducing new	Insufficient IPC during vaccination	possibly be used to	
	vaccines	sessions	integrate vaccination	
		Insufficient documentation on PDV	with other health	
		research activities and good practice in	programs	
		general.	Improvement in	
		Insufficient specific strategies for	healthcare coverage by	
		reaching difficult-to-access populations	creating new districts	
		Difficulties in mobilizing campaign		
		resources in a timely manner		
Surveillance	Existence of an accurate system of	Follow-up activities often take place late	Existence of	
	epidemiological surveillance	with regard to epidemics often linked to	surveillance integration	
	Existence of a national network of	difficulties in mobilizing resources	project at the	
	laboratories	Insufficient surveillance at the	community level under	
	Support from partners	community level	the USAID/ SENEGAL	
		Weak confirmation of bacterial diseases	healthcare community	
		at the operational level	programs	
Funding	Existence of two EPI sub-	Lack of funding autonomy for those	Possibility of making	Budgetary
	components, surveillance and	responsible for EPI	the program	restrictions
	follow-up in FMSE	Insufficient resources allocated to EPI	independent via the	at the State
	Secure budget line item for the	Postponements in the availability of	reforms in the DREAT	level
	purchase of vaccines and supplies	funds at all levels	study	
	Funding participation by healthcare			
	committees			
	Indemnity allocated to service			
	providers for advanced and mobile			
	activities.			

Component	Strengths	Weaknesses	Opportunities	Threats
Outcomes	Very good accessibility: Penta1 at			Repeated
	96% in 2009			withholding
	Good Penta 3 coverage : 87% in			of
	2009			information
	Acceptable drop-out rate: 9% in			could
	2009			compromise
				follow-up of
				execution
Impact	Ending the circulation of the			Risk of
	indigenous wild polio virus			imported
	No case of death from measles			WPV
	recorded since 2005			

IV. VISION AND PRIORITIES

EPI's current vision is in tune with GIVS and is focusing on the following points:

- Immunisation is critical for reinforcing healthcare systems in general, and for reaching the Millennium Development Goals (MDG), and specifically, for reducing infant-juvenile mortality and maternal mortality, in partnership with other healthcare programs focused on the child
- The use of immunisation as the best way to improve health and security throughout the world
- The solidarity of the international community that is necessary to guarantee that everyone has fair access to indispensable vaccinations

The program priorities for the 2012 – 2016 period are:

- Eradication, elimination, and control of preventable diseases by vaccination
- Sustained program funding
- Regular supply delivery and improvement of vaccine management
- Adequate upgrading and maintenance of CDF equipment and of logistics on wheels
- Waste management
- Integration with the other health programs
- Equitable services offered
- Introduction of new vaccines
- Improving EPI communication.

V. OBJECTIVES AND STRATEGIC ORIENTATION AND CALLS TO ACTION

V.1 OBJECTIVE

EPI's objective is to contribute to the reduction of infant and juvenile mortality and the improvement of maternal health by vaccination and by surveillance of targeted EPI diseases and potentially epidemic diseases. Specifically, from between now and 2016, the goal will be to:

- Reach vaccination coverage of at least 95% for BCG, penta 3, polio 3, pneumo 3 and Rota
 2 in infants aged 0 to 11 months, at the national level
- Reach vaccination coverage of at least 90% for MCV and AAV in infants aged 0 to 11 months, at the national level
- Reach vaccine coverage of at least 90% for BCG, penta 3, polio 3, pneumo 3 and Rota 2 for infants aged 0 to 11 months, in every district
- 4. Reach vaccine coverage of at least 85% for MCV and AAV for infants aged 0 to 11 months, in every district
- 5. Reach at least 90% of vaccine coverage for VAT 2+ for pregnant women, in every district
- 6. Maintain stoppage circulation of the wild indigenous polio virus
- 7. Stop transmission of the indigenous measles virus
- 8. Eliminate neonatal and maternal tetanus (MNT)
- 9. Ensure the prevention of yellow fever epidemics
- 10. Ensure the prevention of meningitis epidemics
- 11. Introduce pneumococcal vaccine into routine EPI by 2012
- 12. Introduce rotavirus vaccine into 2013 routine EPI
- 13. Provide 100% of funding for traditional vaccines and supplies as well as co-financing of new vaccines through the national budget.

V. 2. STRATEGIC AXES AND ACTION ITEMS

Using action items to implement strategic axes will allow the program's goals for each component to be attained on a global scale. Improved equality in accessing vaccination services requires improved knowledge of difficult populations so that their specific needs are better taken into account during the planning phase. To do so, the national level will need to draft directives that are targeted at aiding districts. Good coordination of strategy implementation allows for regular follow-up, information to be shared between different players for united and more efficient measures to take place and increase the program's successes. One of the major difficulties seen at the operational level (specifically at the healthcare stations) is poor mastery of vaccination targets along with coverage risks due to errors, as well as difficulties in vaccine management. Therefore, it is necessary to continue the census and updates at the local level to come up with targeted forecasts. The country adheres to GIVS' strategic vision of obtaining the MDGs; the range of vaccinations offered will be

expanded to include pneumonia and rotavirus within the EPI routine through the organisation of a mass campaign against Meningococcus A and, finally, its introduction into the EPI routine as well.

The external EPI review showed the need to reinforce the capacities of participants to achieve a higher quality of management and program implementation. This will be done through training, as well as training supervision about the program's different areas, and through rewarding good performance.

A plan of action following the survey on efficient management of vaccines and inventory of logistics was drafted to grow EPI's logistical performance. Follow-up on the implementation of these directives will be one of the major priorities in the CMYP.

The lack of a specific EPI communication plan was one of the major issues noted by the external review. It is, therefore, imperative that there be a communication plan that is based on the evidence and takes into account past successful experiences so that the program is more visible and that participation among the population grows. This will be done in close collaboration with SNEIPS and in partnership with all those involved in communication.

The weak bacteriological confirmation of diseases with epidemic potential remains an element of the surveillance system that is lacking. Overall, however, the system is globally successful. In the same vein, reinforcing laboratory capacity for this is one of the plan's priorities, to increase early detection of cases to be able to react in a timely manner.

The SVAs will now be pursued to maintain what has been attained as far as eradication and elimination and control of disease, plus the successes in the EPI routine. Considering the risk of WPV being imported and the need to reinforce childhood immunity, a minimum of two polio SVAs will be organized every year. To control measles, because of the possibility of the accumulation of susceptible individuals, a follow-up campaign will be organised. The campaign's date (between 2013 and 2015) will be decided in relation to the level of the accumulation of susceptible individuals, considering routine coverage. In addition, if the routine coverage achieves 95% for each district before 2016, the introduction of a second dose of MCV into the routine is possible. Considering the yellow fever vaccine protection period, all districts which have organised campaigns in the last 10 years will need to run them again. Because the country is part of the meningitis belt, the resurgence of epidemics in the sub-region and the existence of a new and efficient vaccine with a long protection period (10

46

years), a preventive campaign against meningitis A avec with MenAfriVac will be organized in the regions with the highest risk.

After the FAR vaccination campaigns are implemented in all districts at high risk for MNT and in light of related successes, the country intends to request validation that MNT has been eliminated. Since the introduction of new vaccines into the EPI routine will substantially increase resource needs due to costs higher than traditional vaccines, the question of the program's funding viability must be followed closely.

For each strategic axis, action items have been identified.

Table VI: Strategic approaches and action items

Components	STRATEGIC AXES	ACTION ITEMS
	Improved equality in	Draft a national plan supporting specific districts for reinforcement of
	access to vaccination	vaccination in zones or populations that are difficult to access
	services	Draft an annual EPI plan for all districts, integrating appropriate
		strategies to access difficult-to-reach populations
		Holding meetings on ICC policy every six months
		Involve all interested partners in the ICC technical meeting
Organisation	Improved coordination	Regularly organize quarterly monitoring meetings at the central,
and	at all levels	regional and district level
management of		Regularly organize coordination meetings at the regional and district
the program		levels
	Master forecasting	Proceed to target census for children aged less than one year in all
	targets	districts for self-monitoring
	Improving human	Reinforce personnel for BRISE for the 14 medical regions tmake them
	resources	functional
	Enlarge the range of	Introduce the pneumococcus vaccine
	vaccines offered	Introduce rotavirus vaccine
Capacity		Train and/or reuse all personnel involved in the program's
building		management and implemenation
	Reuse of training	Finalize the draft of the EPI guide
		Integrate the EPI modules and CDF maintenance into the training
		curricula for healthcare agents
		Perform training supervisions on a regular basis and document it
	Training supervision	with written feedback at all levels (central, regional and district)

Components	STRATEGIC AXES	ACTION ITEMS				
	Reward good	Implement a reward system for good performance				
	performance	implement a reward system for good performance				
	Upgrade logistics	Implement a five-year upgrade plan for logistics and GEV				
	Encourage use of					
	equipment that uses	Implement solar refrigerators without batteries in targeted zones				
	solar energy					
Logistics and	Maintenance and	Draft and implement a maintenance plan for CDF equipment and for				
management of	equipment	de logistics on wheels				
vaccines	Automate temperature	Implement automatic temperature recording at all vaccine				
	monitoring	warehouses				
Reinforce the		Include in survey collection tools data about logistics				
	computer					
	management system	Ensure accurate data archiving				
	Improve planning	Create good planning for vaccination activities				
		Correctly execute the planned activities				
	Improve the quality of	Ensure that immunisation is performed by qualified personnel				
	services	Create a good ICP for vaccination sessions				
		Reinforce AEFI monitoring				
Provision of	Community	Involve the community in planning vaccination activities				
services and	involvement					
integration of	Equality in services	Identify populations that are difficult to reach and implement specific				
activities	offered	strategies to access them				
	Self-monitoring of	Implement self-monitoring curves for each vaccination unit and keep				
	performance	them up-to-date				
	Active follow-up of	Make systematic and document follow-up activities related to targets				
	targets	Benefit from SVAs to actively follow-up on targets				
	Integration with the	Integrate vaccination with other activities related to the survival of				
	other health programs	children at the operational level				
Communication	Planning	Draft a global communication plan for the routine vaccinations,				
communication	rianning	founded on evidence				
		Reward and share innovations and successful experiences due to				
	Benefit from successful	good communication practice in support of EPI				
	experiences	Plan ways to recognize good performance				
	Improvement of	Reinforce DPM's communication bureau's human resources				
	coordination	Improve collaboration between SNEIPS and DPM				
	coordination	Re-ignite social mobilization committees at all levels				

Components	STRATEGIC AXES	ACTION ITEMS
	Update tools	Revise and adapt communication support tools
	Monitoring and	Create tools and mechanisms for follow up evaluation
	evaluation	
		Integrate EPI into the communication activities of other programs
		(PNLP,PNT,DSR,CNLS, and the USAID/Senegal community healthcare
	Partnership	program)
		strengthen the partnership with community media and radio
		Develop a partnership with NGOs and OCBs
	Mobilization of funding	Mobilize according to the program's budget for resources to support
	resources	EPUI communication activities
Safety of	Accurate supplies for	Maintain availability of acquired cumplies for SAR SD of RS
injections and	SAB,SD and BS	
management of	Appropriate waste	Establish a partnership with PRONALIN
waste	disposal	
	Improved confirmation	Reinforce laboratory capacity for the bacteriologic confirmation of
	of cases	diseases with potential for epidemic
	Sufficient follow-up of	Implement follow-up fund for epidemics
	epidemics	implement tonow-up tund for epidemics
		Continue polio SVAs
Epidemiological		Organize a follow-up campaign against measles
monitoring	Fradication elimination	Organize a preventive campaign against yellow fever
	and control of targeted	Organize a preventive campaign against meningitis with MenAfriVac
	diseases	in 8 regions (Laolack, Kaffrine, Tamba, Kolda, Diourbel, Fatick,
	uiseases	Sedhiou and Kedougou)
		Organize a survey to verify the elimination of maternal and neonatal
		tetanus
	Financial	Lobby for reform that will give EPI financial independence
Financing the	independence of the	Increase the EPI budget to guarantee that vaccines will be purchased
program	program	and support the investments
	Financial sustainability	

VI. PLAN FOR IMPLEMENTATION

The multi-year 2012-2016 plan will be implemented and will be annually updated via annual work plans. This dynamic process will be able to include any changes.

Table VII: Implementation Plan

STRATEGIC		2012	2013	2014	2015	2016
AXES	ACTION TIEMS					
Improved	Draft a national plan supporting specific districts for	х	х	х	х	х
improved	reinforcement of vaccination in zones or populations					
equality in	that are difficult to access					
	Draft an annual EPI plan for all districts, integrating	Х	Х	х	х	х
vaccination	appropriate strategies to access difficult-to-reach					
services	populations					
	Hold meetings on ICC policy every six months	Х	Х	х	х	х
	Involve all interested partners in the ICC technical	Х	Х	х	х	х
Improved	meeting					
coordination at	Regularly organize quarterly monitoring meetings at the	Х	Х	х	Х	Х
all levels	central, regional and district level					
	Regularly organize coordination meetings at the	Х	Х	Х	Х	Х
	regional and district levels					
Master	Proceed with census for targeted children: aged less	Х	Х	х	х	х
forecasting	than one year in all districts for self-monitoring					
targets						
Improving	Reinforce personnel for BRISE for the 14 medical regions	Х				
human	to make them functional					
resources.						
Enlarge the	Introduce the pneumococcus vaccine	Х				
range of			Х			
vaccines	Introduce rotavirus vaccine					
offered						
	Train and/or reuse all personnel involved in the	Х				
Reuse of	program's management and implementation					
training	Integrate the EPI modules and CDF maintenance into		Х			
ti anning	the training curricula for healthcare agents					
	Finalize the EPI guide draft	Х				

STRATEGIC AXES	ACTION ITEMS	2012	2013	2014	2015	2016
Training supervision	Perform training supervisions on a regular basis and document it with written feedback at all levels (central, regional and district)	X	х	x	x	x
Reward good performance	Implement a reward system for good performance	X				
Upgrade logistics	Implement a five-year upgrade plan for logistics and GEV	Х	х	X	Х	Х
Encourage use of equipment that uses solar energy	Implement solar refrigerators without batteries in targeted zones		X	x	X	X
Maintenance and equipment	Draft and implement a maintenance plan for CDF equipment and for logistics on wheels	X	х	х	х	Х
Automate temperature monitoring	Implement automatic temperature recording at all vaccine warehouses	X				
Reinforce the Computer	Include data about logistics in survey collection tools	х				
Management System	Ensure accurate data archiving	Х	Х	Х	Х	Х
	Correctly execute the planned activities	Х	Х	х	Х	Х
Improve the quality of	Ensure that immunisation is performed by qualified personnel	х	х	х	х	х
services	Create a good ICP for vaccination sessions	х	Х	х	х	Х
	Reinforce AEFI monitoring	Х	Х	х	Х	Х
Community involvement	Involve the community in planning vaccination activities	Х	х	х	Х	х
Equality in services offered	Identify populations that are difficult to reach and implement specific strategies to access them	x	X	Х	Х	x
Self-monitoring of performance	Implement self-monitoring curves for each vaccination unit and keep them up-to-date	X	X	X	X	X
Active follow- up of targets	Make systematic, and document, follow-up activities related to targets	Х	Х	X	Х	Х

STRATEGIC		2012	2013	2014	2015	2016
AXES	ACTION TIEMS					
	Benefit from SVAs to actively follow-up on targets	х	х	х	х	х
Integration		Х	х	х	х	Х
with the other	Integrate vaccination with other activities related to the					
health	survival of children at operational level					
programs						
Discusion	Draft a global communication plan for routine	Х				
Planning	vaccinations, founded on evidence					
	Reward and share innovations and successful	Х	х	х	Х	Х
Benefit from	experiences due to good communication practice in					
successful	support of EPI					
experiences	Plan ways to recognize good performance	х				
	Reinforce DPM's communication bureau's human	х				
Improvement of	resources					
coordination	Improve collaboration between SNEIPS and DPM	х	х	х	х	х
	Re-ignite social mobilization committees at all levels	Х				
Update tools	Revise and adapt communication support tools	Х	х			
Monitoring and evaluation	Create tools and mechanisms for follow-up evaluation.	х				
	Integrate EPI into the communication activities of other	Х	х	х	х	х
	programs (PNLP,PNT,DSR,CNLS, and the USAID/Senegal					
Deuteraukin	community healthcare program)					
Partnership	Strengthen the partnership with community media and	Х				
	radio					
	Develop a partnership with NGOs and OCBs	Х				
Mobilization of	Mobilize according to the program's budget for	х	Х	Х	х	х
funding resources	resources to support EPI communication activities					
Accurate supplies for	Maintain availability of acquired supplies for SAB, SD et	Х	х	х	х	х
SAB,SD and BS	BS					
Appropriate waste disposal	Establish a partnership with PRONALIN.	х				
Improved	Reinforce laboratory capacity for the bacteriologic	х				
confirmation of	confirmation of diseases with epidemic potential					
Sufficient follow-up		x	x	x	x	x
of epidemics	Implement follow-up fund for epidemics					
Eradication,	Continue polio SVAs	Х	х	х	х	Х
elimination and	Organize a follow-up campaign against measles			Х		

STRATEGIC AXES	ACTION ITEMS	2012	2013	2014	2015	2016
control of targeted	Organize a preventive campaign against yellow fever	Х	х	х	х	
diseases	Organize a preventive campaign against meningitis in the 8 targeted regions	Х				
	Organize a survey to verify the elimination of maternal and neonatal tetanus	х				
Financing the	Lobby for reform that will give EPI financial independence	х				
program	Increase the EPI budget to guarantee that vaccines will be purchased and support the investments	х	х	х	х	Х

Table VIII: Vaccine and supplies	forecast for routine vaccinations
----------------------------------	-----------------------------------

Year	Pop Tot		Target po	pulation				Additional	vaccinations	Cost \$					
		bOPV1+3	Men_A	YF	Measles	bOPV1+3	Men_A	YF	SAB_0.5ml	Sdilution_5ml	BS_5I	POLIO	Meningitis	Yellow Fever	Measles
2012	12200977					liquid	lyophilized	lyophilized							
2012 1920.	13203877			5468889		20	10	10				1025086	6565308.79	11484666.9	
				5400005		5,395,800	9,873,300	5,757,900	5,724,000	572,900	63,700	1020000	0000000000	1110100015	
		2562716	9379013					Cons menA	9 873,300	987,800	109,400				
						bOPV1+3	Measles	YF	SAB_0.5ml	Sdilution_5ml	BS_5I				
						liquid	lyophilized	lyophilized							
2013	13566544	2631909		2893744	2170647	20	10	10				1052764		6076861.84	868258.786
						5,541,400	2,285,800	3,040,100	3,040,100	304,200	33,700				
								Cons measles	2,285,800	229,200	26,000				
						bOPV1+3	YF	SAB_0.5ml	Sdilution_5ml	BS_5I					
2014	13932840	2702971		2381122		liquid	lyophilized							5000357.02	
						20	10								
						5,691,000	2,640,600	2,640,600	264,800	29,600		1081188			
						bOPV1+3	YF	SAB_0.5ml	Sdilution_5ml	BS_5I					
2015	14309027	2775951		1847295		liquid	lyophilized								
						20	10								
						5,845,000	2,109,300	2,109,300	211,500	23,800		1110380		3879320.28	
						bOPV1+3									
2016	14695371	2850902				liquid									
						20									
						6,002,500						1140361			

Year	Pop Tot		Target pop	ulation				Additional	vaccinations				Cost \$			
		bOPV1+3	Men_A	YF	Measles	bOPV1+3	Men_A	YF	SAB_0.5ml	Sdilution_5ml	BS_5I	POLIO	Meningitis	Yellow Fever	Measles	
						liquid	lyophilized	lyophilized								
2012	13209877			5468889		20	10	10				1025086 443	6565308 794	11/18/1666 93		
				5400005		5,395,800	9,873,300	5,757,900	5,724,000	572,900	63,700	1023000.443	0505500.754	11404000.55		
		2562716	9379012,563					Cons menA	9,873,300	987,800	109,400					
			09			bOPV1+3	Measles	YF	SAB_0.5ml	Sdilution_5ml	BS_5I					
2013 13				2893744	2744 2170647	liquid	lyophilized	lyophilized								
	13566544	2631909				20	10	10				1052763.777		6076861.841	868258.7855	
						5,541,400	2,285,800	3,040,100	3,040,100	304,200	33,700					
								Cons measles	2,285,800	229,200	26,000					
			2971	2381122			bOPV1+3	YF	SAB_0.5ml	Sdilution_5ml	BS_5I					
2014	13932840	2840 2702971				liquid	lyophilized							5000357.019		
2014	15952640				-	20	10						9	5000557.015		
						5,691,000	2,640,600	2,640,600	264,800	29,600		1081188.399				
						bOPV1+3	YF	SAB_0.5ml	Sdilution_5ml	BS_5I						
2015	1/1309027	2775951		18/7295		liquid	lyophilized									
2015	14303027	2775551		1047255		20	10									
						5,845,000	2,109,300	2,109,300	211,500	23,800		1110380.486		3879320.279		
						bOPV1+3										
2016	14605271	2850002				liquid										
2010	140900/1	2020902				20										
						6,002,500						1140360.759				

Table IX: Vaccine and supplies forecast for vaccination campaigns

VII. ANALYSIS OF COSTS AND FINANCING

VII.1 CURRENT SITUATION

Expenditur % е Cost category 2010 **Current recurrent costs** US\$ \$1978567 Vaccines and injection equipment Traditional \$200,640 10% Under-used \$1,612,662 New Injection materials \$165,265 Personnel \$2,126,575 11% Salaries of existing personnel (vaccination specific) \$576,607 Per-diem for advanced/mobile strategy \$1,008,108 Per-diem for surveillance and monitoring \$541,860 Transportation \$106,265 1% \$59,036 Fixed strategy and delivery of vaccines \$35,422 Advanced strategy Mobile strategy \$11,807 Maintenance and general \$2,640,140 Cold chain maintenance \$2,594,975 13% \$43,229 Maintenance of other equipment \$1,935 Buildings (electricity, water, etc.) Short-term training \$322,985 Social mobilization and IEC \$466,675 Monitoring and follow-up of diseases \$317,126 Program Management Other recurrent costs \$6,004 Subtotal of recurring costs \$7,964,336 41% **Capital costs** Vehicles \$120,000 1% Cold chain equipment \$544,351 Other capital costs \$2,146 Subtotal of recurring costs \$666,497 3% Vaccination campaigns Polio \$5,752,283 Vaccines and injection material \$2,995,249 29% Operating costs \$2,757,034 \$1,541,731 Measles 8%

Table X: Total EPI costs by type in 2010

		Expenditur	%
		e	
	Vaccines and injection material	\$620,018	
	Operating costs	\$921,713	
	Tetanus	\$523,502	3%
	Vaccines and injection material	\$454,283	
	Operating costs	\$69,219	
	Subtotal campaign costs	\$7,817,516	40%
Shared costs			
	Shared personnel costs	\$2,885,786	
	Shared transport costs	\$245,401	
	Buildings		
	Subtotal	\$3,131,186	16%
GRAND TOTAL		\$19,579,536	100%

The total cost of EPI and surveillance in 2010 is estimated at 9,118,385,711 FCFA (US\$ 19,579,536). It can be broken down into four large categories: recurring costs, capital costs, campaign costs, and shared costs. The amount spent on campaign costs is justified by the number of significant campaigns organized in 2010 (1 round of Local Polio Days, 6 rounds of NVD polio, a measles follow-up campaign, a campaign against measles and another against tetanus). In contrast, the low amount of capital costs is linked to the fact that there was little investment in 2010 despite the need for equipment to be replaced.

Figure 12: 2010 cost structure

Table XI: Division	of	recurring	costs	2010
--------------------	----	-----------	-------	------

Current recurrent cost	ts	US\$	%
	Vaccines and injection equipment	\$1978567	
-	Traditional	\$200,640	25%
	Under-used	\$1,612,662	
	New		
	Injection materials	\$165,265	
	Personnel	\$2,126,575	
	Salaries of existing personnel (vaccination specific)	\$576,607	27%
	Per-diem for advanced/mobile strategy	\$1,008,108	
	Per-diem for surveillance and monitoring	\$541,860	
	Transportation	\$106,265	1%
	Fixed strategy and delivery of vaccines	\$59,036	
	Advanced strategy	\$35,422	
	Mobile strategy	\$11,807	
	Maintenance and general	\$2,640,140	33%
	Cold chain maintenance	\$2,594,975	
	Maintenance of other equipment	\$43,229	
	Buildings (electricity, water, etc.)	\$1,935	
	Short-term training	\$322,985	4%
	Social mobilization and IEC	\$466,675	6%
	Monitoring and follow-up of diseases	\$317,126	4%
	Other recurrent costs	\$6,004	
	Subtotal of recurring costs	\$7,964,336	100%

Expenses relative to maintenance of the cold chain, buildings and other equipment represent the largest portion of the recurring costs, 33%, as opposed to 27% for personnel, and 25% for vaccines and injection materials. The personnel expenses are made up of allowances transferred to healthcare agents for implementing advanced/mobile strategies and surveillance.

VII.1.2 DISTRIBUTION AND PROFILE OF EPI FINANCING IN 2010

In 2010, even though external funding represented the largest portion of the program (63%), national funding (governmental and community) remained higher if the different sources are looked at individually. The high amount of UNICEF/OMS funding is explained by the number of significant campaigns organized with the same year.

VII.2 EVOLUTION

VII.2.1. EVOLUTION OF DIFFERENT CATEGORIES OF COSTS

Costs over the duration of the plan are 207,012,833 \$ (96,407,946,456 FCFA), which is an average of 41.4 \$ million (19,281,589,291) per year. The program's global cost vary slightly over time; it will increase from 19. 5 \$ million in 2010 to around 42.7 \$ million in 2013. This increase is explained by the fact that most of the investments should be used during the first 2 years of the CMYP implementation, with, respectively, 666,497 \$ and 1,713,288 \$ in 2012 and 2013.

After 2012, the plan is to introduce the pneumococcus vaccine, and in 2013 to introduce the rotavirus vaccine. These introductions will engender higher costs, and, in particular, for the rotavirus.

The recurrent costs are more significant than the investment costs which do not reach 2 million \$, even in 2013, the year during which the investments costs were the highest within the plan. The costs of new vaccines are ten times higher than those of traditional ones (65.6 million \$ as opposed to 3.2 million \$ million and 16.4 million \$ for under-used vaccines.

In 2012, the campaign costs are higher; this is linked to the organization of the preventive campaign against yellow fever in the regions with have the highest population in the country and also the campaign against meningitis in 8 regions. The routine activities in the fixed strategy are less costly than those in the mobile and advanced strategies.

Figure 15: Breakdown in relation to expense stations

The first two components, vaccines and injection equipment and logistics (68%), along with improvements to immunisation services (29%), use almost all resources (more than 97%). The other components are less costly and account for less than 3%. These include program management (1%); lobbying and communication (1%) of the program and epidemiological supervision and monitoring (1%).

Shared costs (10% of the total) consist of personnel and transport expenses plus building costs. These costs are approximately 3.84 million \$ per year. To be precise, it is personnel costs which are the more costly when compared to transportation costs; they increase regularly during the period, whereas building costs occur only during the plan's first two years of implementation.

VII.2.2 PLAN EVOLUTION AND FUNDING

Resource requirements are assessed at almost 207 million \$ over the period covered by the plan. These needs will be 99% covered if the State maintains its commitments and if the partners confirm their funding intentions.

The changes to financing over the life of the plan is fairly constant, but fluctuates due to the magnitude of the investment at the start of the period and the introduction of vaccines during 2012 to 2013.

The funding structure shows that national funding (State, local collectives and communities) represent 25% of the plan's total funding. The structure of the funding reveals that the State finances 19% of the plan and takes complete charge for traditional vaccines, as well as part of the funding responsibility for new vaccines (co-funding), personnel salaries, construction, delivery of vaccines in the fixed strategy, and a good part of the capital investments. The largest part of the plan (75%) is financed by partners; this funding is intended for the purchase of new vaccines, supplies and also for the cost of operating the related campaigns.

The community supports the efforts of the State through the health committees, which contribute 5% of the total financing of the plan, thus assuring maintenance of the cold chain and maintenance of the buildings.

Financing from GAVI is very important; its share is approximately 30%. This takes into account new vaccines, the pentavalent and injection equipment as well as the meningitis vaccine and 50% of the operational costs for the preventive campaign for meningitis A in 2012.

62

WHO is contributing to financing the supervision, inspections and monitoring of diseases and, to a lesser extent, to short-term training.

UNICEF focuses on reinforcing vaccination services, and is also involved in funding operational costs and vaccines for the campaigns.

up less than 1%.

Funding from Japan, Luxembourg, the Word Blank, UNFPA and USAID is likely and will make

The routine vaccines together represent 64% of the recurring costs and 41% of the total budget for the 5 years of the CMYP. The new vaccines represent 77% of the total vaccine amount, close to half (49%) of recurring costs and a third (32%) of the total budget for the 5 years of the CMYP. In 2012, the pneumococcus vaccine represents \$5,193,825 or 59% for the purchase of vaccines and \$45,176 or 18% for the injection equipment. Out of the \$4,636,631 funded by the State for recurring costs, \$1,038,765 or 22% goes to purchasing the pneumococcus vaccine.

Figure 17: Evolution of vaccine co-funding

	2012	2013	2014	2015	2016	TOTAL	%
Vaccines and injection supplies	0	0	0	0	0	0	0%
Personnel	0	0	0	0	0	0	0%
Transportation	0	0	0	0	0	0	0%
Activities and other recurring costs	57,619	6,575	0	325,14 1	0	389,336	27 %
Logistics (vehicles, cold chain, etc.)	483,78 4	84,737	330,08 8	0	121 111	1 019 720	70 %
Vaccination campaign	42,021	0	0	0	0	42 021	3%
TOTAL	583,42 5	91,313	330,08 9	325,14 1	121,11 0	1,451,07 7	
%	40%	6%	23%	22%	8%		

Table XII: Breakdown of funding gaps including assured and likely funding

*Autres: Japon, Luxembourg, US AID, Union Européenne, Banque Mondiale

Figure 18: Projection of assured and likely funding for 2012 to 2016

Funding of vaccines and immunisation equipment is ensured for the duration of the 2012-2016 plan. Funding for purchase of the pneumococcus vaccine and injection equipment is fully covered by GAVI and the State (co-funded) for the 5 years of the multi-year plan. In addition, there is not a gap in funding and inventory capacity of vaccines is ensure through 2016. Considering assured and likely funding, the global gap for the period is \$1,451,077. The funding gap is mainly related to logistics (70%) and other recurring costs (27%). The composition of this gap shows that it does not compromise the actual implementation of the program.

Where logistics are concerned, it has mainly to do with the construction and maintenance of incinerators. The waste management plan is for districts who do not have incinerators to use hospital incinerators while waiting for incinerators to be built.

For other recurring costs, the training that is scheduled for 2015 makes up 84% of the gap. This training does not include training that is to be organized for the introduction of new vaccines. The training that addresses the various EPI issues could be used in place of the general training planned for 2015.

VII.3 ANALYSIS AND STRATEGIES FOR GAP REDUCTION

The composition of the financial differences reveals a financing gap of some \$1.4 million, not including shared costs but taking into account likely funding. Vaccines will be covered mainly by GAVI and the State. However, the costs related to the purchase of logistics (CDF and logistics on wheels) which are often covered by the State, and usually by the partners, will create the largest gap, around \$1.09 million. To reduce this gap; the State must increase the overall budget for logistics (vehicles, cold chain) and convince other partners to invest more.

For recurring costs, the gap is around \$389,336, or less than \$77.8 thousand per year on average. This small gap is linked to the fact that these activities are usually financed by partners such as WHO and UNICEF.

The gap for immunisation campaigns is \$28.5 million for the entire plan period. This gap almost disappears (\$42,021) if likely funding is taken into account. The strategy which must be employed to buffer this deficit is to defend the program to probable funding sources such as Japan and Luxembourg.

Overall, the EPI is financially viable. Future resource needs vary from 7.4% to 9.5% of the total healthcare expenditures. The funding gap remains at less than 0.4% of total healthcare expenditures except for in 2012 when the gap is estimated at 0.6%. Healthcare expenses are, on average, \$54.72 per person for the life of the plan. EPI resource needs per person will be \$2.7 and do not even represent 0.18% of the country's GDP.

We have identified the following strategies to reinforce the program's sustainability:

• Real annual increase in the "vaccines and supplies" budget line item staring in 2012, and that funds related to this line item be releases in a timely manner

- The use of a part of the budget coming from BCI-State for vaccinations;
- Making available to EPI additional resources that come from the increase of the health budget, which will be increased to 15% of the State's operating budget, in conformity with the recommendations made by the summit of heads of state of the CEDEAO in 2001 (currently 8%) for EPI;
- Use of resources coming from PPTE funds (resources linked to lower debt) through the execution of the DPES;
- Targeting EPI as part of budgetary support;
- Appealing for financial participation of the local collectives in the financing of the program under the transfer of authority involved in decentralisation. statutes and rules envisage a budgetary amount 8% for healthcare, but currently the local collectives rarely reach 4%;
- Involvement of the private sector in EPI financing;
- Seeking alternative sources of financing from GAVI;

VII. FOLLOW-UP-EVALUATION PLAN

Based on program indicators, the objectives are to be measured starting with sources of information and means of verification which have been identified to ensure that the planned activities are, in fact completed, and that the objectives are obtained.

- At the vaccination unit level, a monthly report will be created and an analysis will be completed and shown on the auto-monitoring curve
- At the district level, a monthly report will be created after compiling and analysing the vaccination unit reports using past information during the monthly coordination meetings.
- National level
 - The monthly reports provided to the districts will be compiled and analysed and brochure produced that contains past information. An ICC technical meeting will be held every month.
 - An EPI monitoring and surveillance meeting that brings all the participants together (national, regional, district levels and partners) will be held every three months.
 - Each year, the results meetings for the EPI annual plan and surveillance will be organized with all participants.
 - An annual CMYP update and PTA draft
 - An internal review half-way through the duration of the CMYP that will address immunisation coverage will be organized in 2014
 - An external review at the end of the plan will address immunisation coverage.

	Indicators	Indicators					Annualised objectives				
Objectives	Description	Curren	Target	2012	2013	2014	2015	2016			
		t level									
To reach vaccine coverage of at	CV BCG	80%	95%	90%	95%	95%	95%	95%			
least 95% for BCG, Penta3,	CV Penta 3	70%	95%	90%	95%	95%	95%	95%			
pneumo3 and Rota2 for infants	CV Pneumo3		95%	90%	95%	95%	95%	95%			
age 0 to 11 months, nationally	CV Rota2		95%		90%	95%	95%	95%			
To reach vaccine coverage of at	CV VAR	60%	90%	80%	85%	90%	90%	90%			

Table XIII: CMYP Follow-up indicators

	Indicators Annualised obj					iectives		
Objectives	Description	Curren	Target	2012	2013	2014	2015	2016
		t level						
least 90% for for MCV and AAV	CV VAA	60%						90%
for infants age 0 to 11 month,			90%	80%	85%	90%	90%	
nationally								
To reach vaccine coverage of at	CV VAT 2+							
least 90% for VAT infants		60%	90%	80%	85%	90%	90%	90%
pregnant women, nationally								
To reach vaccine coverage of at								
least 90% in all districts for	% of HD reaching 90 % DE							
BCG, Penta3, pneumo3 and	coverage for BCG, Penta3,	71%	80%	85%	90%	95%	100	100
Rota2 for infants age 0 to 11	pneumo3 and Rota2						%	%
months								
To reach vaccine coverage of at	Number of HD reaching 90%							
least 90% in all districts for	of coverage for MCV and AAV	F.0.0/					100	100
MCV and AAV in infants age 0		58%	80%	85%	90%	95%	%	%
to 11 months								
Reach at least 90% of vaccine	Number of HD reaching 90%							
coverage for VAT for pregnant	of coverage for VAT2	46%	80%	85%	90%	95%	100	100
women in every district							%	%
	Rate of non-polio PFA per							
	100,000 children under 15	3	3	3	3	3	3	3
	years old							
To maintain the interruption of	Number of regions having	11	14	1.4	1.4	14	1.4	1.4
circulation of WPV	the two major indicators	11	14	14	14	14	14	14
	% of adequate stool samples	93	95	95	95	95	95	95
	Number of confirmed cases	0	0	0	0	0	0	0
	of WPV	0	0	0	0	0	0	0
	Number of HD reporting at							
	least one suspected case of	64	75	75	75	75	75	75
	measles during the year							
To interrupt the circulation of	Annual rate of investigation	100%	100%	100	100	100	100	100
the morbillous virus	of suspected cases of			%	%	%	%	%
	measles							
	Number of confirmed cases	909	0	0	0	0	0	0
	of measles							

	Indicators			Annualised objectives					
Objectives	Description	Curren	Target	2012	2013	2014	2015	2016	
		t level							
	Rate of incidence of neonatal	<	<	<	<	<	<	<	
To aliminate maternal and	tetanus	1/100	1 /1000	1/10	1/10	1/10	1/10	1/10	
		0NV	NV	00N	00N	00N	00N	00N	
neonatar tetanus				v	v	v	v	v	
	Number of high-risk districts	0	0	0	0	0	0	0	
Ensure the prevention of	Number of HD reporting at								
vellow fever enidemics	least one suspected case of	49/65	75	75	75	75	75	75	
yenow rever epidemies	yellow fever								
To ensure vaccination	State's funding portion for								
independence through the	traditional and new vaccines	27%	53%	32%	26%	44%	48%	53%	
national budget									

ANNEXES

EPI cost structure for 2012 to 2016

	2012	2013	2014	2015	2016	Total 2012 - 2016	% of general total
	US\$	US\$	US\$	US\$	US\$	US\$	
Base vaccine	8,754,489	18,229,103	18,767,313	19,758,514	19,785,365	85,294,784	41%
Traditional	\$575 047	\$624 822	\$655 221	\$672 933	\$683 675	\$3 211 698	2%
Under-used	\$2 985 617	\$3 097 581	\$3 359 817	\$3 449 806	\$3 544 015	\$16 436 836	8%
New	\$5 193 825	\$14 506 700	\$14 752 275	\$15 635 775	\$15 557 675	\$65 646 250	32%
Injection materials	\$250 256	\$271 271	\$286 214	\$293 928	\$304 917	\$1 406 586	1%
Personnel	\$3 166 022	\$4 127 648	\$5 205 938	\$6 244 654	\$7 402 331	\$26 146 593	13%
Personnel salaries	\$600 567	\$612 578	\$624 830	\$637 326	\$650 073	\$3 125 374	2%
Per-diem for advanced/mobile strategy	\$1 894 275	\$2 815 485	\$3 772 785	\$4 767 252	\$5 799 988	\$19 049 785	9%
Per-diem for surveillance and monitoring	\$671 180	\$699 586	\$808 322	\$840 076	\$952 270	\$3 971 434	2%
Transportation	\$122 009	\$149 452	\$163 776	\$120 805	05 \$137 963 \$69		0%
Fixed strategy	\$67 783	\$83 029	\$90 987	\$67 114	\$76 646	\$385 558	0%
Advanced strategy	\$40 670	\$49 817	\$54 592	\$40 268	\$45 988	\$231 335	0%
Mobile strategy	\$13 557	\$16 606 \$18 197 \$13 423 \$15 329		\$77 112	0%		
Maintenance and general	\$3 074 677	\$3 681 424	\$4 306 791	\$1 784 571	\$2 024 452	\$14 871 915	7%
maintenance	\$2 993 211	\$3 578 620	\$4 182 908	\$1 638 807	\$1 856 331	\$14 249 877	7%
Maintenance of other equipment	\$79 492	\$100 791	\$121 829	\$143 669	\$165 985	\$611 766	0%
Buildings (electricity, water, etc.)	\$1 974	\$2 013	\$2 053	\$2 095	\$2 136	\$10 271	0%
Short-term training	\$351 423	\$380 870	\$410 870	\$325 511	\$321 611	\$1 790 284	1%
Social mobilization and IEC	\$299 830	\$362 184	\$371 709	\$379 143	\$386 726	\$1 799 593	1%
Monitoring and follow-up of diseases	\$339 539	\$362 931	\$372 007	\$429 084	\$455 172	\$1 958 733	1%
Program Management	\$0	\$0	\$0	\$0	\$0	\$0	0%
Other recurrent costs	\$6 280	\$6 575	\$6 862	\$7 147	\$7 434	\$34 298	0%
Subtotal of recurring costs	\$16 364 524	\$27 571 459	\$29 891 480	\$29 343 357	\$30 825 970	\$133 996 791	65%
						\$0	0%
Vehicles	\$142 800	\$249 696	\$127 345	\$0	\$154 571	\$674 412	0%
Cold chain equipment	\$1 128 604	\$1 210 501	\$1 131 580	\$489 662	\$508 221	\$4 468 569	2%
costs	\$441 884	\$227 762	\$230 836	\$235 453	\$239 805	\$1 375 741	1%
Subtotal capital costs	\$1 713 288	\$1 687 960	\$1 489 761	\$725 115	\$902 598	\$6 518 722	3%
						\$0	0%
Polio campaign	\$3 095 767	\$3 311 689	\$3 565 999	\$3 676 100	\$3 749 419	\$17 398 974	8%
Vaccines and injection	• • • • •			•••••			
material	\$1 025 086	\$1 052 764	\$1 081 182	\$1 110 350	\$1 140 361	\$5 409 743	3%
	2012	2013	2014	2015	2016	Total 2012 - 2016	% of general total
---------------------------	---------------------	---------------------	----------------------	--------------------------	----------------------	-----------------------	--------------------------
Operating							
costs	\$2 070 681	\$2 258 925	\$2 484 817	\$2 565 750	\$2 609 058	\$11 989 231	6%
Measles	*^	#1 000 000	\$ 0	**	AD 107 157	* 0.007.405	201
campaign	\$0	\$1 669 968	\$0	\$0	\$2 197 457	\$3 867 425	2%
Vaccines							
and injection material	\$0	\$766 023	<u>۵</u> ₽	\$0	\$972 /15	\$1 738 / 38	1%
Operating	ψυ	φ/00 020	ΨΟ	φυ	ψ072 - 10	φ1700 1 00	1/0
costs	\$0	\$903 945	\$0	\$0	\$1 225 042	\$2 128 987	1%
Meningitis	•		· ·				
campaign	\$4 264 780	\$0	\$0	\$0	\$0	\$4 264 780	2%
Vaccines							
and injection		4.5		4 -			
material	\$2 764 209	\$0	\$0	\$0	\$0	\$2 764 209	1%
Operating	¢1 500 571	¢O	¢0	¢0	¢0	¢1 500 571	1%
	\$1500571	φυ	φυ	φU	φU	\$1500571	1/0
campaign	\$9 276 369	\$4 899 194	\$4 225 973	\$3 363 530	\$0	\$21 765 066	11%
Vaccines	<i>\\</i> 0 270 000	\$1000 101	\$1 1 20 07 0	<i>40 000 000</i>		<i>q</i> =17000000	
and injection							
material	\$8 061 060	\$4 256 140	\$3 696 840	\$2 953 020	\$0	\$18 967 060	9%
Operating							
costs	\$1 215 309	\$643 054	\$529 133	\$410 510	\$0	\$2 798 006	1%
campaign costs	\$16 636 916	\$9 880 851	\$7 791 972	\$7 039 630	\$5 946 876	\$47 296 245	23%
			1			\$0	0%
Shared							
personnel costs	\$3 157 838	\$3 304 821	\$3 558 805	\$3 714 408	\$3 984 175	\$17 720 047	9%
Shared transport	* 050.000		\$000 404	* 005 000	\$070.040		4.07
COSIS	\$250 309	\$255 315	\$260 421	\$265 629	\$270 942	\$1 302 616	1%
Buildings	\$178 413	\$0	\$0	\$0	\$0	\$178 413	0%
Subtotal	\$3 586 559	\$3 560 136	\$3 819 226	\$3 980 037	\$4 255 117	\$19 201 075	9%
	\$38 301 288	\$42 700 406	\$42 992 440	\$41 088 139	\$41 930 561	\$207 012 833	100%
Routine	¢01 664 270	¢20.810.555	\$35 200	¢24.049.500	\$35 983	¢150 716 500	
Vaccination	\$21 004 372	Φ 3∠ 019 335	400	\$34 040 309	000	\$159710 588	
campaigns	\$16 636 916	\$9 880 851	\$7 791 972	\$7 039 630	\$5 946 876	\$47 296 245	

CMYP Updated Baseline and Annual Targets

Number	Baseline year	Baseline and targets						
	2010	2012	2013	2014	2015	2016		
	475 815	501 856	515 406	529 322	543 614	558 296		
Total number of infant deaths	29 025	30 613	31 440	32 289	33 160	34 056		
Total number of surviving infants	446,790	471,243	483,966	497,033	510,454	524,240		
Total number of pregnant women	475 815	501 856	515 406	529 322	543 614	558 296		
Number of vaccinated infants (or to be vaccinated) with BCG	193 197	451 670	489 636	502 856	516 433	530 377		
BCG Coverage (%) ^[1]	41%	90%	95%	95%	95%	95%		
Number of vaccinated infants (or to be vaccinated) with three doses of OPV	196 580	451 670	489 636	502 856	<mark>516 433</mark>	530 377		
OPV3 Coverage (%)[2]	44%	96%	101%	101%	101%	101%		
Number of vaccinated infants (or to be vaccinated) with the first dose of DTC ^[3]	196 958	424 118	459 768	472 182	484 931	498 024		
Number of vaccinated infants (or to be vaccinated) with three doses of DTC ^[3]	196 070	424 118	459 768	472 182	484 931	498 024		
DTC3 coverage (%) ^[2]	44%	90%	95%	95%	95%	95%		
Loss rate ¹¹ for base line year and forecast for the following year for DTC (%)	5%	5%	5%	5%	5%	5%		
Loss rate ^[1] for base line year and forecast for the following year for DTC (%)	1,05	1,05	1,05	1,05	1,05	1,05		
Target population vaccinated with the first dose of Pneumococcal vaccine		424 118	459 768	472 182	484 931	499 024		
Target population vaccinated with the third dose of pneumococcal vaccine		424 118	459 768	472 182	484 931	499 024		
Pneumococcal Coverage (%) ^[2]	0%	90%	95%	95%	95%	95%		
Number of vaccinated infants (or to be vaccinated) with the first dose the measles vaccine	147 855	376 994	411 371	447 330	459 408	471 812		
Measles vaccine	33%	80%	85%	90%	90%	90%		

Number	Baseline year	Baseline and targets						
	2010	2012	2013	2014	2015	2016		
coverage(%) ^[2]								
Pregnant women vaccinated with AT +	157 248	401 485	438 095	476 390	489 252	502 462		
AT+ coverage(%) ^[4]	33%	80%	85%	90%	90%	90%		
Annual drop-out rate for DTC[(DTC1 - DTC3) / DTC1] x 100 ^[5]	0%	0%	0%	0%	0%	0%		

Budget Line	Baseline year	Year 1	Year 2	Year 3	Year 4	Year 5
Item	2010	2012	2013	2014	2015	2016
Vaccines (only systematic vaccines)	1 813 302	8 754 489	18 229 103	18 967 313	19 758 514	19 785 365
Traditional vaccines	1 813 302	3 560 664	3 722 403	4 215 038	4 122 739	4 227 690
New and Under-used Vaccines		5 193 825	14 506 700	14 752 275	15 635 775	15 557 675
Injection equipment	165 265	250 256	271 271	286 214	293 928	304 917
Personnel	1 584 715	2 494 842	3 428 063	4 397 615	5 404 578	6 449 961
Salaries for PNV healthcare agents employed full time (only working on vaccinations)	576 607	600 567	612 578	624 830	637 326	650 073
Daily costs for mobile/proxim ity vaccination teams	1 008 108	1 894 275	2 815 485	3 772 785	4 767 252	5 799 888
Transportation	106 265	122 009	149 452	163 727	120 805	137 963
Maintenance and overhead	2 640 140	3 074 677	3 681 424	4 306 791	1 784 571	2 024 452
Training	322 985	351 423	380 870	410 870	325 511	321 611
Social mobilization and IEC	466 675	299 830	362 184	371 709	379 143	386 726
Disease surveillance	317 126	339 539	362 931	372 007	429 084	451 172
Program Management						
Other recurrent costs	6 004	6 280	6 575	6 862	7 147	7 434
Subtotal of recurring costs	7 422 477	15 693 345	26 871 873	29 283 108	28 503 281	29 869 601
Vehicles	120 000	142 800	249 696	127 345		154 571
Cold chain equipment	544 351	1 228 604	1 210 501	1 131 580	489 662	508 221
Other capital costs	2 146	441 884	227 762	230 836	235 453	239 805
Subtotal Equipment Costs	666 497	1 813 288	1 687 959	1 489 761	725 115	902 597
Polio	5 752 283	3 095 767	3 311 689	3 565 999	3 676 100	3 749 419
Measles	1 541 731		1 669 968			2 197 457